

ON THE APPROXIMATION BY LINEAR OPERATORS
OF THE CLASS S_m

BY

ALEXANDRU LUPAŞ

Presented at the "A. Myller" Memorial Scientific Session, Iași,
August 20–25, 1970

1. Let $C(X)$ be the space of all real-valued functions which are defined and continuous on $X = [a, b]$ and $B(X)$ be the Banach space of real-valued functions which are bounded on X . Let \mathfrak{M} be a fixed set of linear operators $C(X) \rightarrow B(X)$ and H a linear subspace of $C(X)$.

Definition 1. The closure of the subspace H relative to the class \mathfrak{M} is a linear subspace $H(\mathfrak{M})$ of $C(X)$ defined in the following way: $f \in H(\mathfrak{M})$ if for each sequence of operators $(L_n)_{n=1}^{\infty} \subset \mathfrak{M}$, the equality

$$(1) \quad \lim_{n \rightarrow \infty} \|h - L_n h\| = 0, \text{ for every } h \in H,$$

implies

$$(2) \quad \lim_{n \rightarrow \infty} \|f - L_n f\| = 0.$$

The theory of approximation by sequences of linear operators includes the treatment of the following three problems:

(A) Give necessary and sufficient conditions imposed to the subspace H , such that

$$(3) \quad H(\mathfrak{M}) = C(X).$$

(B) If $C(X) \setminus H(\mathfrak{M}) \neq \emptyset$ to describe the closure $H(\mathfrak{M})$, that is to obtain necessary and sufficient conditions which must be verified by an element $f \in C(X)$ such that $f \in H(\mathfrak{M})$.

(C) If the subspace H and the class \mathfrak{M} for which (3) is fulfilled, are known, then to study the approximation properties of some concrete sequences of operators from \mathfrak{M} .

In (1) and (2) we consider the „sup“-norm. The formulation of the problems (A) and (B) are similar with the topics of Weierstrass-Stone's problem (see [8]—[9]). When \mathfrak{M} is the set of linear positive operators, the problem (A) was solved by M. L. Brodski [3] and by Ju. A. Saskin [7]. Likewise for this case the problem (B) was solved by V. A. Baskakov [1] and independently by H. Bauer [2].

In [5], as a generalization of linear positive operators, P. P. Korovkin has introduced a new class of linear operators, the class S_m . For these operators the problem (A) is solved by R. M. Minkova and Ju. A. Saskin [6]. Our purpose is to give a solution for the problem (B), when \mathfrak{M} is the class S_m of operators.

2. If $g \in C(X)$ vanishes at the point $x_0 \in X$ and g changes the sign, then we say that x_0 is a simple root. If $g(x_0) = 0$ and there is an open neighbourhood V of x_0 such that the sign of g is constant on $V \setminus \{x_0\}$, then we adopt the term of double root for x_0 . If $g(a) = 0$ then a is a simple root and also the same convention for the second end-point b of X .

Let g be a function from $C(X)$ which has, on the interval X , at most m roots (taking into account the multiplicity). Likewise by ε_{x_0} , $x_0 \in X$, we denote the functional of evaluation which is defined as

$$\varepsilon_{x_0}(f) = f(x_0), \quad f \in C(X).$$

Definition 2. A functional $F \in C(X)^*$ belongs to the class $S(m, g)$ if for each $f \in C(X)$ such that $\text{sign } f(x) = \text{sign } g(x)$, $x \in X$, we have

$$F(f) \geq 0;$$

A linear operator $L: C(X) \rightarrow B(X)$ belongs to the class S_m , iff for each $x_0 \in X$ there is a function $g_{x_0} \in C(X)$ such that

$$L_{x_0} \in S(m, g_{x_0}), \text{ where } L_{x_0}(f) = \varepsilon_{x_0}(Lf), \quad f \in C(X).$$

When we do not use effectively the function g , instead of $S(m, g)$ we write $S(m)$. It is clear that S_0 is the set of linear positive operators and moreover

$$S_0 \subset S_1 \subset \dots \subset S_m \subset \dots$$

If $x_0 \in X$ then $M_{x_0}^m(H)$ denotes the set of all linear functionals $F \in C(X)^*$ with the properties

$$1. \quad F \in S(m)$$

$$2. \quad F(h) = \varepsilon_{x_0}(h) \text{ for every } h \in H.$$

Definition 3. A function $f \in C(X)$ is called (H_m) -harmonic at the point $x_0 \in X$, iff

$$F_{x_0}(f) = \varepsilon_{x_0}(f) \text{ for every } F_{x_0} \in M_{x_0}^m(H).$$

However, this notion has a real meaning only in the case when the subspace H separates the points of X and contains the constant functions; in the case $m = 0$ the (H_0) -harmonic functions were introduced by H. Bauer [2].

Suppose now that \mathfrak{M}_m is the set of all sequences of linear operators $L_n: C(X) \rightarrow B(X)$, $n = 1, 2, \dots$, such that

$$\begin{aligned} \text{(i)} \quad & \|L_n\| \leq M < +\infty, \quad n = 1, 2, \dots, \\ \text{(ii)} \quad & L_n \in S_m, \quad n = 1, 2, \dots, \end{aligned}$$

and in the same time we shall consider that H separates the points of X and $1 \in H$.

Lemma 1. (P. P. Korovkin [5]). If $(F_n)_{n=1}^\infty \subset S(m)$ is a sequence weakly convergent to F , then $F \in S(m)$.

Lemma 2. Let $(F_n)_{n=1}^\infty \subset S(m)$, $\|F_n\| \leq M < +\infty$, $n = 1, 2, \dots$, and $f_0 \in C(X)$. If f_0 is (H_m) -harmonic at the point $x_0 \in X$, then

$$\lim_{n \rightarrow \infty} F_n(h) = \varepsilon_{x_0}(h) \text{ for every } h \in H,$$

implies

$$\lim_{n \rightarrow \infty} F_n(f_0) = \varepsilon_{x_0}(f_0).$$

Proof. Let (F_{n_k}) , $k = 1, 2, \dots$, be a subsequence weakly convergent to F . Because

$$\lim_{k \rightarrow \infty} F_{n_k}(h) = \varepsilon_{x_0}(h), \quad h \in H,$$

we have

$$F(h) = \varepsilon_{x_0}(h), \quad h \in H.$$

If $F(f_0) \neq \varepsilon_{x_0}(f_0)$ then, by using lemma 1, we conclude that there is a functional $F \in M_{x_0}^m(H)$ which does not equal the functional of evaluation at f_0 , and that is a contradiction.

Theorem. The closure $H(\mathfrak{M}_m)$ coincides with the set of all (H_m) -harmonic functions on X .

Proof. Let us suppose that $f_0 \in H(\mathfrak{M}_m)$ and that there is a point $x_0 \in X$ at which the function f_0 is not (H_m) -harmonic. Then there exists a functional $\varphi_{x_0} \in M_{x_0}^m(H)$ such that

$$\varphi_{x_0}(f_0) \neq \varepsilon_{x_0}(f_0).$$

We define the operators $L_n: C(X) \rightarrow B(X)$, $n = 1, 2, \dots$, in the following way

$$(L_n f)(x) = \begin{cases} f(x) & \text{for } x \in X \setminus \{x_0\} \\ \varphi_{x_0}(f) & \text{for } x = x_0 \end{cases} \quad n = 1, 2, \dots$$

If L_x is defined by $L_x(f) = \varepsilon_x(L_n f)$, $f \in C(X)$, then $L_x \in \mathcal{S}(m)$ and $L_x \in \mathcal{S}(0) \subset \mathcal{S}(m)$ for $x \in X \setminus \{x_0\}$. Therefore for every $x \in X$, $L_x \in \mathcal{S}(m)$, which is the same with the fact that $L_n \in \mathcal{S}_m$, $n = 1, 2, \dots$. Because

$$\lim_{n \rightarrow \infty} \|h - L_n h\| = 0, \quad h \in H,$$

we must have

$$(4) \quad \lim_{n \rightarrow \infty} \|f_0 - L_n f_0\| = 0.$$

On the other hand the relation (4) is not valid taking into account that for each $n = 1, 2, \dots$, we have

$$(L_n f_0)(x_0) = \varphi_{x_0}(f_0) \neq f_0(x_0).$$

If there is a sequence $(L_n)_{n=1}^{\infty} \subset \mathcal{M}_m$ for which

$$\lim_{n \rightarrow \infty} \|h - L_n h\| = 0, \quad h \in H,$$

and

$$\lim_{n \rightarrow \infty} \|f_0 - L_n f_0\| \neq 0,$$

that is, f_0 is a (H_m) -harmonic function which belongs to $C(X) \setminus H(\mathcal{M}_m)$, then there is $\varepsilon > 0$, a sequence of natural numbers (n_k) , $k = 1, 2, \dots$, $\lim_{k \rightarrow \infty} n_k = \infty$, and a sequence $(x_k)_{k=1}^{\infty} \subset X$, $\lim_{k \rightarrow \infty} x_k = x_0$, such that

$$(5) \quad |\varepsilon_{x_k}(f_0) - \varepsilon_{x_k}(L_{n_k} f_0)| \geq \varepsilon, \quad k = 1, 2, \dots.$$

Let $F_k(f) = \varepsilon_{x_k}(L_{n_k} f)$, $f \in C(X)$, $k = 1, 2, \dots$; according to the definition of the class \mathcal{M}_m and by lemma 2 it follows that

$$\lim_{k \rightarrow \infty} F_k(f_0) = \varepsilon_{x_0}(f_0),$$

which is in contradiction with (5).

Institutul de calcul al Academiei
R.S. România. Filiala Cluj

REFERENCES

1. Baskakov, V. A. — Some convergence conditions for linear positive operators. *Uspehi Mat. Nauk*, XVI, 1 (97), pp. 131 — 135 (1961), (Russian).
2. Bauer H. — Silovscher Rand und Dirichlet'sches Problem. *Ann. Inst. Fourier (Grenoble)*, 11, pp. 89 — 136 (1961).
3. Brodski, M. L. — On a necessary and sufficient condition for a system of functions for which Korovkin's theorem is valid. *Studies of Modern Problems of Constructive Theory of Functions*, Fizmatgiz, Moscow, 1961, pp. 318 — 323, (Russian).

4. Korovkin P. P. — *Linear operators and approximation theory*. Delhi, 1960.
5. Korovkin P. P. — The convergence of the sequences of linear operators. *Uspehi Mat. Nauk*, XVII, 4 (106), 1962, pp. 147 — 153, (Russian).
6. Miškova R. M. and Saskin Ju. A. — On the convergence of linear operators of the class \mathcal{S}_m . *Mat. Zametki*, 6, 5, pp. 591 — 598 (1969), (Russian).
7. Saskin Ju. A. — On the convergence of linear positive operators in the space of continuous functions. *Dokl. Akad. Nauk SSSR*, 131, No. 3, pp. 525 — 527 (1960), (Russian).
8. Saskin Ju. A. — The convergence of linear operators and the theorem of Weierstrass-Stone. *Appl. of Functional analysis to the approx. theory*. pp. 192 — 198, Kalinin, 1970, (Russian).
9. Saskin Ju. A. — On the convergence of linear operators (should appear in the Proceedings of the International Conf. on Constructive Function Theory, Varna, 1970).

ASUPRA APROXIMĂRII PRIN OPERATORI LINIARI DIN CLASA \mathcal{S}_m

Rezumat

Fie \mathcal{M}_m mulțimea sirurilor uniform mărginite de operatori liniari $L_n : C(X) \rightarrow B(X)$ astfel încât $L_n \in \mathcal{S}_m$, $n = 1, 2, \dots$, unde \mathcal{S}_m este clasa de operatori introdusă de către P. P. Korovkin în lucrarea [5], ca o generalizare a mulțimii operatorilor pozitivi. În acest articol se rezolvă următoarea problemă: fixând un subspatiu liniar H al lui $C(X)$, să se găsească o condiție necesară și suficientă pe care să o verifice o funcție $f_0 \in C(X)$ astfel încât pentru orice sir de operatori $L_n \in \mathcal{M}_m$, $n = 1, 2, \dots$, din

$$\lim_{n \rightarrow \infty} \|h - L_n h\| = 0, \quad h \in H,$$

să rezulte

$$\lim_{n \rightarrow \infty} \|f_0 - L_n f_0\| = 0.$$