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1. Let C(X) be the space_ of all real-valued functions which are
defined and continuous on X = {a, b] and B (X) be the Banach space of
real-valued functions which are bounded on X. Let 9% be a fixed set of
linear operators C (X) —» B (X) and H 2 linear subspace of C(X).

Dafinition 1. The closure of the subspace H relative o the class M
is a lincar subspace H(IR) of C(X) defined in the following way . feH (M)
if for eacl sequence of operators (L,)}. ,C I, the equality

n=

(1) lim Y h— Lsh =0, for every hie H,
implies
(2) lim | f — L. fIl=0.

n—+ %

The theory of approximation by sequences of linear operators inclu-
des the treatment of the following three problems:

{A) Give necessary and sufficient conditions imposed to the subspace
H, such that

(3) H @) = C{X).

(B) If CONHM) +F ¢ 1o describe the closure H{M), that is to
obtain necessary and sufficient conditions which must be verified by an
element feC (X) such that f e HO).

(C) If the subspace H and the class 9t for which (3) is fulfiled, are

known, then to study the approximation properties of some concrete Se-
quences of operators from pile
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In (1) and (2) we consider the ,sup*-norm. The formulation of the
problems (A) and (B} are similar with the topics of Weierstrass-Stone’s
problem (see [8]—[9]). When 9 is the set of linear positive operators, the
problem (A} was solved by M.L.Brodski [3] and by Ju. A. Saskin
[7]. Likewise for this case the problem (B) was solved by V. A. Baskakov
[1] and independently by H. Bauer {2].

In (5], as a generalization of linear positive operators, P. P. Korov-
kin has introduced a new class of linear operators, the class §,. For
these operators the problem (A) is solved by R. M. Minkova and
Ju. A. Saskin [6). Our purpose is to give a solurion for the problem
{B), when 9 is the class S,, of operators.

2. If g¢ C(X) vanishes at the point x,€X and g changes the sign,
then we sav that v, is a simple root. If g(v,) =10 and there is an open
neighbourhood ¥ of 1, such that the sign of ¢ isconstant on P~ ix,!, then
we adopt the term of double root for x,. If g{a} =0 then a is a simple
root and also the same convention for the second end-point b of X.

Let g be a function from C(X) which has, on the interval X, at
most m roots (taking into account the multiplicity). Likewise by z., v, €X,

we denote the functional of evaluation which is defined as
2 (fy =flw), feC{X).

Definition 2. A functional FeC|X)* belongs 10 the class S (m, g) if
for each fe C (X} such thar sign f(x) =sign g (v), v€ X, we have

F(f) =03

A linear operator L:C(X)~— B(X) belongs 1o the class S,, iff for eac!
to€ X there is a function g €C (X) such thar

L € S(mg), where L (/) == (L), feC(X).

When we do not use effectively the function g, instead of S{m, g}
we write S (m). It is clear that §, is the set of linear positive operators
and moreover

ST SiC..CS.C...

If 1eX then MI(H) denotes the set of all linear functionals
FeC{X)* with the properties

1. FeS(m)
2, F(h) =& (k) for every A ¢ H.

Definition 3. 4 function fe C(X) is called (H,)~harmonic at the point
%€ X, iff

F, f) = <, (f) for every F.,eM; (H).
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3 oN TH

However, this notion has a real meaning only in the‘case fwhe[r_lo:lt;é
subspace H separates the points of X and contains the constant dum: dl s
in the case m=20 the (H,) - harmomc¢ functions were 1ntroauce y

2 ! .
o Bgu‘;;gse[ rzow that 9R,, is the set of ail sequences of linear operators

L,: CliX)— B{X), n= 1,2,.., such that
(i) L., Il = M + 20, n= 1’2,.”,
L.¢ Sm; 17 == 1,2,.-. 5

{ii)

and in the same time we shall consider that H separates the points of X
d 1eH. o

o Lemma 1. (P. P. Korovkin [31). 1f

weakly convergent to F, then Fe S (m). . .

-Lemmab 2, Let (F"):“_ICS(m‘;, F <M< w, n= 1,2,.., and

FeCiX). If fuis (H,|-harmonic at the point x,€X, then
lim F, (h) = = (1) for every heH,

[ERE )

(F)=  C S(m) is a sequence

- I'
implies lim Fa (fo) = &, (fo)-

i

Proof. Let (F, )}, B=1,2,., be 2 subsequence weakly convergent

to F. Because
lim F,, (k) = &, (h), he H,

Fewd
we have

F{h) =< (h), heH.

If F(fJ) = ¢, (fo) then, by using lemma 1, we conclude that there is a

functional Fe M {H) which does not equal the functional of evaluation

at and that is a contradiction. '
fo"l‘ heorem. The closure H (M) coincides with the set of all (H.)-har-

monic functions on X. ) )
Ifraof. Let us suppose that f,eH (9R,,) and that therehls a pzm;
xp € X at which the function f, is not (H,)-harmonic. Then there exists

functiona} @, € M/ (H) such that
o (o) 7 50, L):
We define the operators L,: C (X} — B(X), n=1,2,.
N _[f(x:: for xe X\{x) 1,2,
o (1) for 3= xy

., in the following way

(L, f) %)
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If L, is defined by L.(f)=s.(L,f), f€C(X), then L, e€S(m) and

L,eS(0) < S(m) for xe X\ {xa} Therefore for every xe X, L.€S(m), which
is the same with the fact that L,eS,, n=1,2,.... Because

lim | & — L, | =0, heH,

we raust have
(4) lim|jfy — Lo fu]l = 0.
n—» o

On the other hand the relation (4) is not valid taking into account that
for each n = 1, 2,..., we have

(L, f} (%) = e, (o) F= 10 {x0)-

If there is a sequence (L), C M. for which

L

lim|{h — L, k| =0, heH,

1=

]iir:u“fﬂ - Lu fo “:f'L'OS

that is, f, is a (H,)-harmonic function which belongs to C(X) . H (M),
then there is £>>0, a sequence of natural numbers (m), £=1, 2,.,

ii_{l’sloilk = ¢o, and a sequence (x,)2, C X, kl_l’r:x x, = X,, such that

(;‘) il €p (fo) — &1, (Ln;,fo) , =e k=1,2,..

Let Fy(f) = eq {L,, f), feC(X), £ =1,2,..; according to the definition
of the class M, and by lemma 2 it follows that

lim F (/o) = s, (/2),

which is in contradiction with {5).

and

Instiriinl de calerd al Acadenmici
R. S, Romdnie, ritiala Che
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ASUPRA APROXIMARII PRIN OPERATORI LINIARI
DIN CLASA S,

Rezumat

Fie 9, mulfimea girurilor uniform mirginite de operator: Lniari

L,: C{X)— B(X) astfel incit L,€S,, n=1,2,., unde S,, este clasa de
operatori introdusi de cidtre P. P. Korovkin in lucrarea [5], ca o
generalizare a mul{imii operatorilor pozitivi. In acest articol se rezolvd
urmitoarea problemi: fizind un subspapiu liniar H al lui C({X), sd se
giseascd o conditie necesard §i suficientd pe care si o verifice o functie
f, € C(X) asifel incit pentru orice sir de operatori LeMy,, n=1,2,.,din

m|hA—L_ k| =0, heH,

a3
si rezulte

lim|| f, = Lafell= 0.
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