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LA FORMULE DI QUADRATURE GENERALISEY
DE NEWTON
PAR

D. V. TONESCU

Dans e présent travail nous géndralisons la formule de quoadralure
classique de Newton, a des intderales définies de la forme
b

S(.;' Cay (b — P fla) de,

[d

1. 1a formule de quadrvaturve ayan les nocuds «, b

ol x> —1. B>

muitiples d'ordres p, .
§l. Une formule auxilinire de quadrature. 1.1 Considérons une formule

de quadrature de la forme
4

\(.rr Ly (b — R fl) de = Ao (a) + (@) b, JY (@) +

(1.1)
+ Bof (b) + Bt (0) 4. 4 B () G () + R(f)

ot 2»—1, 8>—1, les nocuds «, i sont multiples d’ordres p, g ct le noeud

terminent de maniére que

fes coeificients de cette formmle se dé
., p+q T est lacile de démontrer que ces cocfTici-

par ces conditions; ils dépendent de .
1l de déterminer les coelficients C, A4,

@, = (a, D).

R [t*]=0, pour L =0,1,

ents sont parfaitement déterminds
Il cst important pour cc trave

et B, |

Pour cela remplagons dans la (ormule {1.1)

(@ — @) (b — @) et dans cc cas le reste de la formule est nul.

aurons
(1.?) C(x, — a)? (b — @) = Ia+p, Bty

la fonetion f par le produit
Nous
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ol
!
(1.3} faippig = S(f — a) P (- e,
Iin désignant par
b
(1.4) I’ = \(.a ay* {b — a8 dr.
@
on i
~ s+ {e+2) . (a4 p) (B4HT){(E+2 (3
(1.5) 1,.1,.,@,31.,,:1,( ) ) (2 ) (B 1) (B+2) -‘”}(hh”;f ,
(2 + 34+ 22 {x+ £+ 3} (et 3+ ptg+1
et par suwite
) ; ]; ?+1 " Jg_t_) . 4 - 1) A F ) 3
(1.6) = ( Mo t2)...(a  pUB+IHB+2)...(; +q)(h—-u)’"=’.

L 4-2)

(r, — )b — ) (24342 (2243 n+ 2 4p g+ 1)

_ De méme en remplagant dans ta formule (1.1) la fonction [ pat le pro-
duil (&0 — @b — ) (& — 1) et ensuite par le produit (¢ — )Pl — )t
(@ — ), on lrouve

P = (1) (ap- DB L (B
» l_ - 2 s X
py—a {p=1" {z+ 5+ {z+3+p + ¢)

o e - (B +qg+Na+{z+pb ,
7 kB p gt

(— VP (b 1) (o )+ 1) (8 g — 1) .
h— ., (g 1) (v + B +2) {2+ 5 +p iy I

i +

(1.7) Jp S

(1.8; B,_,=

b, B+ a+(z+p+1)b
' 2+ B+ p gl

Lovsquce '/',e Cr+1- Y a, b], on peut mettre le veste R{f] de la formule
(1.1), par ta méthade de la fonction o, {1}, sous la forme
b

(1.9) MRS e
a
Pour preéciser le degrd dlexactitude de la formule de quadrature (1.1),

i
i} sl ndeessaire de (-nlc-ulc-r\ ods. Bo remplagant dans la formule (1.1} Ia

[

i)
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fonetion [ par le produt. (r — a)? (b — &) (0 — 1), on trouve

" P b=ttt (o)) (o) (BH1) (B H )

(1.10 \ r‘(!,g-_:(..._] =17 _
[ ) \.J ) (prg+1)! (2+E+ 9) (a4 SEpr g1

X] e __{,?' +(f -+ ])H +(7 +P 4‘1)1,1!
L :

2 + 5+ p gt |

Cette Tormule montre quce st
(84 g+ Va+(z+p+ 1) b,

ARE &Iy
) ‘ 2+ b ptq ’

¢ degrd dexactitnde de la Sformule (1.0} est p + 4.
§2. La formule de guadrature généralisée de Simpson 21,87

(;’3+q+1)u+(:r.+-p+1)b
a+ B+ p+q+2 '

i

on a dapres o forude (1.10),59{1.\' =0, ¢t le degré dexaclilude o

.2]) J£yo=

fe o for-

o

mude (11) augmente.
Les coelficients de la formule de aquadrature (1.1) se changent cu-
A e g, Aoy By B, .. B;_,. C' ¢t notamment les cocflicients

¢ A, . Byo, sont
(2.2) v p (24 8+p4g+2)H (z+1) o (2 +P)BH) - (B4
(z+p+ )P (B+g+) (24 3+2) . (2 BHp+q+l)

. LBy +1 (-J.+1}...(7.+pwi!)($+1)...(ﬂ+q) {(b-—-a)r?
£, = : e
” zbpt] (24 B+ 2) ... (2 B+ p+ g+ 1) {p— 1}
o AP (2 +1)(a+p) B+ (B +g—1) (b =a)i=

R e ) e
B4 ¢+ (y.+{5+2)...;7.+-g3+-p+q+1) (g—1)1°"

La formule de quadrature (1.1) devient

N
(2.4 \(.r —ay (b — )P f (@) de=Ay fla) -+ A ay+ 4 Apa [P a) +
" F B () + B (B + e+ B[O +

S+ L mp)y (B B4 | B g ] (b_”)p_lf‘"'”((r)+
(0+8+2) o (a+B+p+g+ 1) et p)(atp+]) (p—1)1
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(z+2+p+q+2)"*" l.((;'ﬂ_t_fli_] Ja+ (H;P_+_1)b)
(zp+)BHp+1) \ 2+ 2 +p +g+2
o+ p A+ (b —ay~t
B p+p+1)  (g=1)!
Dans 1a formule (2.4) on a R[2¥=0, pour h=0,1,...,p+q ct
p+g4+ 1

Lorsque f = (74172 {u, ], on peut mettre le veste R [f] de la Tormule
{2.4) sous la lorme

Ty .www4+RUL

ir
Rini= (o
.ﬂ
La formule (2.4) fait partic de luelasse des formules de quadrature
de type Gauss [2].

[P O ) i o @+ AL (@4 oo+ Apes fON O

—
LS
b1 |

—

+ Bof(b) + Bif (b)) + ... + B, S (b) 4

O f (@) + Cof (1) o+ o+ Cof (0a) + BS],
ol p est un poids positil sur I'intervalle (o, b) ct ol les noeuds ay, &y ... @,
ot les coetlicients g, Ay, dp_ 1 Boy By By, €, Cayeny Co € dé-
terminent de manitre que R [af], pour k=0, 1., 20 +p +¢—1. Nous
avons étudié la formule de type Gaunss (2.3) dans notre fravail {2}. La formule
(2.4) correspond &4 n = 1. Nous avons montré que la fonetion ¢ a le signe
de (—1)7 sur Vintervalle (a, b).

La formule (2.1) est fa généralisation de la forande de quadrature de
Simpson, it cas des noewds, a, b madtiples dordres p, g et s¢ réduit & la for-
mule de Simpson lorsque p = g = 1.

11 résulte alors que la formule généralisce de Simpson {(2.4), a le degrdé
d'exactitnde p + ¢ + 1.

o
Dailleurs on peut ealeuier \Lds On trouve
P (h—q)p+e+?
w4+ LB+p+q+2 (ptgt2)!
0+ 1) (o+p+D(B+1)..(B+g+1])
(0 +5+2) o +B8+p+q+3)

bds = (~1)

5 S O

(2.6)

X

o
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§3. La Jormule de quadrature généralisée de Newton, 3.1 Considérons
la formule générale de quadrature (1.1) et supposons que le noeud o, annule
1o coefficient de [*7V(b), cc qui veut dire que

e B+ +{x+p+ 10

) S
Nous dirons gue &, est un noewd cxceptionnel .
Dans ce cas les coelficients de f~"{a) et de f () deviennent

I N Vo) Gl Ch) P CEY i) (R B CA )

D= T o) s Bt
(z+2+p+qg+12H (24+1) . (24+p)(B+1) - (8+¢q)
(x+p+1)P(B+g)y  (a+242) .. (e+2+p+y+1)

ot I tormule de quadrature (1.1) se réduit & une formule de la lorme

(3.8) =r

2

]

()= M = Ao () AL () e a0
B4 , o ,

FBf(B) + BLf(O) + o H By fOR() A+
by [PO() 4 L) + RS
Les coelficients Ay ., Aoz, B yerry By_e s¢ déduisent des conditions

imposées a la formule de quadrature (8.4), telles que le reste R[] soit nul
pour f{r} =¥, K =0,1....p + ¢

La lormule (8.1 peut s'éerire
1

S(.u —ay (b — ) f () de= oAy [ (a) + A @)kt L S )+

rl

I LY+ B e By SR ¢
JP(y.-+-l'l)... (z4p--D(EB+1) ... (B+g—1) {h—e)r™!
(z+p+1)z+5+2) (2 +2+p+q) {(p—1)"
o + ) 2+ 8 1ot — :
e
(z +p + 1B+ g :
C'est une formule de fype Gauss avec les nocuds @, b multiples d’ordres

P, — 1 et le nocud a, .
Le veste de la formule (3.3), lorsque f& CPH0{a, b, est de fa Torme
b

(8:6) Rif1= (o retem ds

&8

(8.3)

(B+q)

e-h(a) +
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on la fonetion ¢ « lw signe ele
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(S
1YoV sur Fintervalle (o, 0. Pour la suite de ce .
b .
travail il est néeessaive de ('-\|(-n\('r\ads. On trouve (3.12) k1= Sa-r“mﬁ“ 45
g :
- R Pb— @yt oit ta fonction o« le signe de (—1)" sur Fintercalle (a, ). Pour 2. ROUS avons
e L : ;
- Y+ + B tg+l - P — )t
13.7) “ pra+i): pg+) \L., = {—1} ! (')( ”)q s
. s+ 1) (a2 p gt
(1+1)m(u+1:+1;w-+1y”(g+q) (8.13) “ (prg+1)- bek 2P0 )
(2+8+2) 2+ 3+p + 4+ 2] LolxEl) (z+4p) (2+1) (B 1)
FaN
3.2, Reprenons la formule de quadrature (1.1) ot supposons que & (24 3+2) o (z+ 3+ p+y+2)
woit un noewd exceptionnel qui annule e cocflicient de fETD. clest d dire
T |
(3.8) ty e (8 +g+ Deat (@ +p)h

5.3, Multiplions les denx membres des formules

s (3.3, [3.31) avee
(3.14) Brq+d
' a4 S+ptgt=

o+ B+ p gt
1hans ce eias, on i

z-+p+1

(3.9) i, l:(_ 1) P (h-—u)t (e +1).
B+g+1 (g —1) v
(3.10) r=}ﬂi+5+njq+lww (2 +1)

(2 4p) (G4q+1)
et la formule (1

'/.+,’ﬂ-l-p+q+‘.£’
-‘(““FMS'—1) B+ qg—1)

x+ 4 4+ 2) (=t

ot njoutons menthre fmembre, Nous aurons |
+E24pt0

_ (A pHE+L) - (B4

{2+ 5+2)

3

\(.r—rf)jt (h—ay flr)da A flay+ Ay ) +:, LT )+

a formule de quadratwe

An+BEp+ g+ ) ’
) devient

b OBy £ B A e B S? 5(h) +
b L p e D (B
’ (xkﬂrﬂuﬂm+3+ﬁ+qnx+é+w+q+)
\(n'—— (b — P fa) de = A fla) + ALY + e A [P @)+ : :
) . . ; r-t : \ i h- ﬂ')r’_- (—;ﬁ-—q)_( ;j__‘__{]_'l_-_l) ’(():«-J (”} F
LI f(h) + BUFDY + .+ By_o Jm2(b) + (8.15} {p—ut ap+l
(3.11) +,b4 )m(x4p—n(5+1y”(3+q—4)x +{1+PN3+Q+1N1+ﬁ+p+Q+1wmﬂ
(ff+”+l)(ff.+f$+‘_")...(y_-{—:l':’.-‘rp—}-q)
) l-(-ﬂ)"_](v. +7) (b — a7 pu-y

() +
(x4 p+1P (2+g)" 1 )
((]—1)' J 1)

{z+p) (x+B4+p+g)PHt =
20|+ RIS
ety A )]+ i

f; o 1) (5 +f i ptag=] —
N (34+q) (z+p+1) (= §4+p-g+1) TG+
(B+q+1) (= +p)
Dans ta formule (3.11) les coellicients Ly .o, Aoy, B yory Booas8 +(=1)! (2 +p) (= £pel) | (bl f"’ ”(b + R[f]
déduisent des conditions imposdes a cette formule, tc]les que R [:L*] =0, B+q+1 (q—l)
pour k=0, 1,...p + 7.
La 101 mulc (8.11) est une formule (lc type Gauss avee les nocuds @, b
muktiples d’ordres p —1,¢ ¢t le nocud ay .
Lorsque [ =

oit les coclficients /A, ct By

(8.16)

Crradd [a b}, on peut mettre le reste

sont «onnds par les formules
R [f] sous la forme

i = (5 +q+1) <Ly + (ap+1) A7
o 4 BEp g2 ’
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(24g+1) B+ (z4p41) By

(3.16) B, =
v+ S4+ptgt
el
i
(317) RIS =\ Do ds
p
ol

. Gy ethptly
Y - .

3.18
| ) 2+ 8+p+qt

Les formules (3.7) et (3.12) monlrent que
b
(3.19) \ Lds=0,
ct par suile. dans la formule (3.13) nous avons Rfa¥] =0, pour k=01, ..
pigqetptg-+1. Le dearé d’exactitude de Ja formule (3.15) cst done au
moins p--g+1. Nous allens prouver qu'il est p+g41.
Si f & Cri+? [ab} on démontre par la méthode de la fonction 3 que
le reste R[f], de la formule (3.15) peut sc mettre sous la forme
'b
(3.20) R|f|= \ 0 /i ds,
"

Pour I fonction 8, nous avons

b

RO ds = {—1)!

r {wdp+p+q—1) (b—a)P+ate
(aB4ptg+1)0 (pg+2)!
(3.21) a
(a-F1) oo (@ p1) (B41) .. (B+g+1)
(o p+2) oo (@-B+p+g+3)

ce qui montre que le degré d'exactitude de la formule ( 3.15) est p+q-+1.
Lo formule (3.13) cst la généralisation de la formule de quadrature de
1]

Newton pour des intégrales de la forme g(m——a)“ (b—2a)® f(v) dr, 01 & > —1,

a
p=—1, et avee les noewds «. b, multiples d'ordres p, g.
Cest Yo formule (3.13) qui a fait Pobjet du présent travail.
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Pour o = 0. B =0. p=1, ¢ =71.1les nocuds ¢, ct partagent en
trois parties cgales Pintervalle (a. &) ¢t fa formmle (3.13) se réduit a da
formule ciassique de quadrature de Newion.
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FORMULA DE CUADRATURI GENERALIZAEL A LUT NEWTOXN
Rezumal
Tn aceasta lucrare se eenceralizeaza fornmla de cuadraturd clasicit o Ini
Newton pentra integrale definite de forma
i
\(.a‘ — ) (b — 1 fla)de
a

unde %2> 1—, 2> —1, formula de enadraturd avind nodurile o b muliiple
de ordine p, g



