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149 C. Kalik, P. Szilagyi 19

On démontre que les fonctions -

won= | wio) rorgan,
Q,—-0

représentent un ensemble complet dans Hy + {5,(Q)} sont ici les mondmes ™ 4% D
quand o; prend les valeurs de nombres entiers non négatifs, R L

On démontre ensuite que pour les équations de La
aussi un ensemble complet de fonctions dans ok

C‘esf: dans la méme partie du travail qu'on s'occupe de la méthode de Trefftz appliqué
a la solution du probléme de Dirichlet quand Ia fonction donnée sur I' apartient 3 l’eir;p qb‘;e
U(T'). On démontre que chaque solution de I'ensemble U(Q) appartient & I'espace W) (‘:;";n ;
que la solution approchée construite d'aprés Trefftz converge uniformément & l‘intér:iaeur de !E]:t

place les fonctions sphériques seront

TENSIUNI TERMICE IN PRISME LUNGI

de

LADISLAU NEMETI

1. Punerea problemei. In lucrarea de fatd se cautd calcularea asa
numitelor tensiuni termice intr-o prizmd lungd, adicd calcularea eforturi-
lor unitare ce se nasc intr-un asemenea corp in urma unui cimp de tempe-
raturd-neuniformd. $i anume vom considera un cimp stafionar al carui
divergenfd este nulda in interiorul corpului.

Conform problemei noastre, la suprafata laterald a prizmei nu avem
forte exterioare, iar in privinta forfelor atacind pe suprafetele de baza,
vom dispune ulterior.

Prizma o presupunem foarte lungd. Cimpul de temperaturd si nu
depind4d de coordonata z - dealungul prizmei. Atunci se poate agtepta ca
si tensiunile termice vor fi indepedente de z, cel pufin atunci, daca forfele
de pe baze sint alese in mod corespunzitor.

Vom fincerca si rezolvim problema calculdrii stérii elastice a acestui
corp cu ajutorul functiei de tensiuni a lui Airy, binecunoscutd in teoria
deformarilor plane.

Ecuatiile generale ale stirii elastice sint urmatoarele :

Ecuatiile de compatibilitate,

%y 4 aﬂsx: aﬂq{xy etes, i (1)
ot Y a¥9y
23_22 :i(aTyz 4. Max _ aY’U’}etc. (2)
%9y Az | g% ay ax

intre componentii tensorului de deformatie si ai vectorului de depla-
sare exista relatiile :

Ep. = etc.,
a7 (3)

e b7 -4 a¥ ete.
9% ay

Txy
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Ecuatiile de echilibru in lipsa unor forfe de masi :

a9y Tyy 0%y __
; By @
In fine legea Iui Hooke

tura ; » completata cu alungirile cauzate prin tempera-

1
Ey = ?(Gx = {.LU_‘, T P‘GZ) + B'ﬂ Etcu (5)

1
Yxy — ? Tyy- D

TE‘Illpel‘atul‘ﬂ calculata e 1 i T T S = !: a
» 0 o Iglne L= b]tra a; [ af..lsfa(‘e ecuatia :

Ad =0. (7)

2. Integrarea ecuatiior.. In conditii i

; : area ecuafiior.. iile probl e, ecuatii

(7) se s,sl‘mphflca prin urmatoarele ipotezlé: Riasesakaice e do"
a) Toate cantititile sint independente de 2
b)w =0; e, = 0. ‘
&) T ) By sy — Yxy = 0.
Aceastd din urmi ipotezi implica 1i

supra‘fel:elel de bazi ale prizmei.
Ecuatiile (1) —(7) se simplificd dupd cum urmeazi :

azsy =L ate, :i&]’ﬂ
5‘1"2 ;),1‘2 a¥ay (8)

psa unui moment de torsiune la

dao, 1+ BTy —0
ox av

a'fxy_l_ doy __ 0
0% ay

2G

ex = = (ox — us) + (14 p)ﬁﬁe

5y — 210 (op — us) + (14 P-)ﬁ“ﬂ‘-(

s

Y= % (11)
unde s-a notat B A (12)
] 8= 0jtiay
$i avem
B o
g (13)

1) 26(1 + y) = E.
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Pacd punem

2 2 2F
oy =2E g, =8F - 39° (14)
ay? 94" 9%9y

atunci ecuatiile (9) sint satisficute automat. Dacd se cunoaste § din (13)

atunci se calculeazi si starea de deformatiune din (10), (11) si o, din (12).
in fine pentru satisfacerea ecuatiei (8), £ trebuie sd verifice ecuafia

biarmonica 1 \

A'F 9*F o'F

o#* 9x9y* ot ) (15)
Prin urmare pentru caleulul tensiunilor termice, funcfia lui Airy

poate fi folositd, fird vre-o modificare esentiald.

AAF =

3. Caleulul lui F. Se stie ci F este determinat univoc, daca este dat pe

e o . aF
conturul domenijului in cauzd: F si £
an
Daci conturul este neincircat — este cazul nostru — atunci avem
pe el [1]:

F o A e B Oy, | B8 RCE ol
an on an

(16)

oF _p, E_¢

ox v

Daci sectiunea prizmei este simplu comexd, atunci cele trei constante
de integrare 4, B, C sint neesentiale, intrucit ele nu au vre-o influentd
asupra tensiunilor si starea de tensiuni si de deformatii este determinata
univoc [1]. Daci insi sectiunea prizmej reprezintd un domeniu multiplu
conex (prizmi ,,goald”’), atunci avem pentru fiecare contur 3 cornstante de
integrare, din care numai 1 X 3 sint neesentiale, restul neputind fi ales
in mod arbitrar. Conditia care ne va livra relafiile pentru determinarea
acestor constante reiese din criteriul ci deplasarea » gi v si fie functii mono-
valente la inconjurarea umei ,,gduri’ a secfiunii. ‘

introducem urmitoarele notatii: fie ¢ funcfia conjugatid a funciiei

armonice
$ =0y + oy, =AF
adici s + #f o funcfie monogeni a variabilei complexe { = x + 4y. Fie
mai departe
S 4 4T o functie primitiva a lui s 4 .
Avem
is-:ai:‘s‘, ﬂi:——a—-T:—t_ (17)
9%  9¥ gy, 0%

Punem analog pentru temperatura

40P, 04 2¥ = S (@ + i) (@ + ddy).

10 — Babes—Bolyai: Matematicd

\



146 Ladislau Németi 4

Pentru calcularea Iui # si v avem la dispozifie urmitoarele relatij ;

o v

— =g, — =&

9% * oy = !

S e (18)
ay ax G axay’

ou av =0, }

0z 0z

avind (10) :

N 1 __OF
&% ‘E[a s ax*J P+ we |

v 1 0*F } (19)
o~ o —SX]+ e el

Integrarea lor (19), luind in considerare si (18), ne da :

MZ?IG'[(l_P)S—aai:]+f3(1+lh)9+cy+cl

v =-21G_[(1 —p)T_—%ﬂ + B + WY —cx + o,

Noi solicitim deci ca 1 v sd fie functii monovalente ale luj x siy,
in spetd, cd la inconjurul unuj contur unei ,,gduri” a sectiunii, ele si nu-gj
schimbe valoarea.

Notind cu [f], schimbarea valorii unei functii la inconjurul unuj
contur, desideratul nostru este deci

[#]e = [v]o = 0. (21)
In formulele (20), gisim pentrn derivatele luj F

- (2],

a7 |o vl

ca o conmsecin{d imediatd a relatiilor (16).
Vom avea deci ca criteriu de monovalentfd :

[S+ iT]o= —l—f—pB[BJri‘I’]Q- (22)

Aceasti relatie — pentru fiecare contur interior al sectiunii cite una —
determind in mod univoc constantele de integrare ,,esentiale’” ale problemei.

Inainte de a trece la un exemplu prin care se va deslusi metoda de
aplicare a relatiei (22) mai facem o Temarcd : se observi ci temperatura
nu influenteazi asupra lui F decit prin criteriul de monovalentd pentru
deplasiri. Daci sectiunea prizmej este simplu conexj — prizma ,,plind”’ —
atunci F este determinat univoc din AAF — ¢ $i din condifiile la limit3 :

. (20)
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]

~ cimpul termic nu exercitd nici o influenti. I# acest caz deci nu avem tensiuni

termice in planul sectiunii :
(23)

Ox = 0y = Tgy =10 (62 == 0).

4. Tensiunile termiee intr-un tub. Considerim un exemplu dte uapljca:lfl:e
entru metoda dezvoltati in punctul precedent. Prizma _nogs 13 sd fie
un tub, adicd un cilindru al cdrui secfiune este delimitatd prin doud cercurij

concentrice cu razele 7, si 7; < 7,.

v T
Folosim coordonatele polare », ¢ si notim constanta? = ]|

si variabila p = ?
Solufia generali a ecuatiei (13) este:

d =18 + 4 Inp+ § [(¥n 0" — onp™")cos np +(3,0" — By p~") sin ). (24)

n=1 -

Avem atunci
C

9+ip=K,+ & lnC+ ”231[ (Yn — 18) (%Y — (o +1By) (f')—n]

i

L— iy (L) .
04 4% — K, + K,{+ 9, In c+L2—r,-(_) s e S
4

X : — (n—I)
A S
+hn);,2[ n+1 (’i) pEgre i

[0 4 oW ]o= 2mi [8:L — (g + B)7:]. (25)

Se vede de aici imediat ca tensiunile termice oy, oy, Txy DU se nasc decit

in urma coeficientilor 8, o, B;.
Pentru functia lui Airy avem conditiile la limitd :

B g
lar=r: F=0, %r= ;
lar=v,: F=A + Bcosg + Csing (26)
ra£=Bcosq1—|—CSian_
ar

Pentru F vom pune :
F=ay+ a0+ ayIn o + ayp% In p + (Byp + b1® + bap™ +bsp 1n p) cos +
+ (cop + c10® + 'CzP_1 +cyp In p) sin g.
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. Epndﬂ:ijle la limitd (26) dau atunci pentru coeficienti urmitoarele
ecuatii

ﬂo—l“al:{)
by + by + b, =0
€ + 01 + 65 =0

20, +a,+a, =0

by +3by —by+ by, =10
G t+36; —¢y 4¢3 =10

@y + 418 +a,In £ + aE2ln E = 4
o€ + 0,8 + b, 4 b,E In £ = B
& + ¢, 82 4 CzE;_I Figgin & =C

20,8 + a7+ 252 In £+ 1) = 0
By + 35,8 — 8,5 + bE(InE+1) = B
Gk + 36,88 — 7'+ E (In £+ 1) = 0.

(27)

Mai lipsesc trei ecuatii pentru calcularea tuturor necunoscutelor sile gasim
acestea prin criteriul de monovalenta.

Avem intii:

il |
s = AF = — [day+ day(Inp+1) + (36, p+2b,~")cosp + (86,0 -+ 26,0~ sino],

2
- . 1 i : £N\=7?
(oo ok g T[cl+ day 1nG +8(b; — o) + 2 (8, + icy) (—] J
¥y 7 %
aRe 1 ; €2
S +4iT = —E[Cz + G50 + 4ayt InG4-4(b; — dcy) ?,-(T) 4-2(bgF dcy)ri In ‘l;] §

2mi
2
i

[S+iT]p= [4a,T + 2(by + dc,)7;].

¥

Compararea marimilor (25) si (28) prin relatia (22) ne da:

a Bd 5
L 1—pu . T
E v
be—= i ;
e Py 2 ' (29)
¢ B, -
S Lo J
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- pentru celelalte constante géisim din (27) (nu ne intereseazd agbycy A, B i C) :

B2 InE+ 1) — 1
a; = — g 2(52_1)
2E2Ink
dy = Ay E2—1
1 1
b= —7bar )
Betyp &
T2 o
gy = et et
;i g " 8]
e Sl g
(Rt C"g=+1

Tensiunile le gisim din functia lui Airy :
1aF | 1 AF

o= r 9 72 g9?
Og == F
s
art
a2 gl L_ai] 31
%__a'_(r . (31)
o, = AF — EB§. (31a)

Gisim, ca rezultat final, formulele :

< B BB g g ]
oo l_pz[ga_l(l—i-P) np—1|4

+_f_%(a1coscp+ﬂlsincp)(— = i g A < 9_3-),

11—y E2 41 RF 41
o B ARGR i L }
G Rl il e
E : 1 ;
—|—:%(al cos @ + [Slsmzp)[—a“r1 P P_'_ﬁ p—a],
__E B _—e -1k _3] 32
Try 1f”2(u1cosnp—|—ﬁls1n<p)( E"+1P+p E’+IP , (32)
& 2 E
o, = — EBd, + Ilfu Bﬂl[z:n_f k*lz—) _?_—uﬂﬁl In p—

E 2

el e e oes -
2
e

—I—_E—PB”(lmp-‘SmL [51) P —Blp‘i]sin Er=

—EB Y, [(Yao" — oy p=") cos ng + (3,p" — Byp~") sinng].

n=2



b

=

din afard, fluxul termic il putem pune :

qu_.;.—l—qlco:?.cp—[—cpgcoqu:—}—_,, (33)

Teava este umplutd cu api in fi

I ; pa in fierbere, de o temperaturs ici
entu(l1 fie trzfl.ngmﬁelredal caldurii intre api si teavi si filg o mate?{éh??ilgli‘i
poseda coeficientul de conductibili ica 1 icientii di
et onductibilitate termicd A. Atunci coeficientii din

o
¥
‘BI — q‘;ﬂ
_ el 6 il (34)
= a gy Pe=0
i En i
Yﬂ == nA k” EZH +1 2 8,1 — O,
unde
it n i.
k/r = g
.
o

. Ca esentiala pentru evitarea distrugerii tevii, vom considera difer

intre te1151‘ugea principald, maximi si minimi, conform teoriei delruenta
a 1“1 de“ bam‘F—Venant. O analizd amanunfiti a stirii de eforturi u lltJere
arata cd maximul acestei diferente il gasim la r =7, si @ = 0 T

Aceasta va fi:

0= (0p — Gr)r=r‘ = (%)r:r, ==
e=0 =0
S e SR (&2 —1)
1—p & [q"(e—l z]+‘h(ea+1)<kaﬂ+1)J' (35)
cu i
A
it
= i
el
a
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5. Aplicatie la tevile fierhitoare ale ca I
: : {le la fevi : zanelor. In aceste fevi cim
termic se determind prin urmétoarele condifii : feava primegte céldllljru;

Tensiuni termice in prisme lungi 151,
BIBLIOGRAFIE

[1] Frank—Mises, Die Differential und Integralgleichungen dey Mechanik und Physik.
Braunschweig, 1935.

TEITJIOBBIE HAIIPSI)KEHMA B OJIMHHBIX TMPHU3MAX
(KpaTtkoe cojepikaHue)

HCCJ’[EI{Y!OTCH TeNnJoBele HANpsizkKeHHss B JJHHHBIX TIpPU3MAaX, €CJIH TEepMHUYecKoe MoJe

cTalMOHapHO BO BpeMEHH H He H3MeHseTcd BHOJb 06pa3y10umx.
OTmeuaeTrcs, UYTO B JaHHOM cJyyae HMeeTcA COCTOsSHHE TIJOCKOH JIECDOPMEIII.HH,

npuueM (GYHKIUHA HanpsoKenuit DpH Mcnonb3yeTcs W 3Mech, TaK Kak OHa M B JaHHOM
cayuae siBasercs OGHrapMoHudeckoll (yHxuuei.

Pasnyuua IO OTHOLIEHHIO K CAY4dld MOCTOSHHOH TeMmiepaTyphl NpOSBJSAETCS B MHO-
FOYHCAEHHBIX CEYEHWSAX NPH3MBI NPU YCTAHOBJEHHH YCJIOBHS, YTOOB MepeMeiienus OGbuii
MOHOreHHBIMH (yHKUHAMH NpH 0OpaileHHH BOKPYT OJHOrO ,,0TBepcTHs’” ceueHus. B To
JKe BpeMsi JAHHOE YCJAOBHE AAET BO3MOMKHOCTb BBIMUCJIEHHH HAlpsSKEHHIT.

B xauecTBe npHMepa NPHBOJANTCH TNPHMEHEHHE NPEAJIOMEHHOTO METOdA MPH BhIYNC:
JIEHMH HanpsizkeHufi B Kpyrjoit tpyGe, W [OJyYeHHBIE De3yJbTaThl MPHMEdSIOTCA MpPH
pasMepeHHH KHMIATHALHLIX TPY6 MapoBLIX KOTJIOB.

TENSIONS THERMIQUES DANS DES PRISMES LONGS

(Résumé)

On étudie les tensions thermiques dans des prismes longs, au cas oil le champ thermique
est stationnaire dans le temps et ne varie pas le long des générateurs. :

On montre que dans ce cas hous avons affaire 4 un état de déformation plane et que la
fonction de tensions d’Airy trouve ici son application, étant dans ce cas aussi une fonetion bi-
hagmonique.

La différence par rapport au cas de la température constante se manifeste dans les sec-
tions multiplement connexes du prisme par la prescription de cette condition, que les dépla-
cements soient des fonctions monogénes sur le pourtour d'un ,,trou’’ de la section. Cette condi-
tion rend toujours possible le calcul des tensions.

A titre d’exemple on expose l'application de la méthode proposée au calcul des tensions
dans un tube circulaire et I'on applique les résultats trouvés a la détermination des dimensions
des tubes d’ébullition des chaudiéres & vapeur.



