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MATEMATICA

ASUPRA UNOR SISTEME DE INEGALITATI LINIARE
CU SOLUTII NENEGATIVE

APLICATII LA PROGRAMAREA LINTARA

DR

- L. NEGRESCU

Comunicare prezentaid de academician T. POPOVICIU in sedinfa din 7 mai 1963

Tn nota de fa{# vom da conditii suficiente pentru ca un sistem de
inegalitdti liniare sd aibd toate solufiile nenegative.

Cu probleme legate de existenta solutiilor pozitive ale sistemelor
de inegalititi sam ecuafii liniare s-au ocupat mali multi matematicieni
printre care putem aminti pe B. Stiemke [1], L. L. Dines [2], C. F. Guam-
mer [3], V. S. Mihelson [4], 5. N. Cernikov [5].

“fn lucrarea [6] s-a dat o conditie suficientd pentru ea un sistem de
ecuatii liniare s% aib# o solufie pozitiva.

1. Fie sistemul de inegalititi liniare

Az =0, g 7

‘ &y
unde 4 = (a;) (¢, =1,2,...,n) gie=| - |
mﬂ:

Daci din matricea A suprimim linia gi coloana a i-a, atunci notim
nous matrice cu 4, iar dacd din « scoatem elementul @;, vom nota noua
matrice coloani de ordinul » — 1, cu 2.

Relativ 1a sistemul (1) se poate demonstra

TEOREMA 1. Dacd

a) sistemul Ax > 0 are cel puin o solulic T >0,



e .
2

b) A > 0, a;;, = () RETI
i Uy Qi =0 pentru i, =1,2,. .. ; . )
solutic @, a sistemulug (1) este n;gwgatie’ui’(wo ’::ZZO);% “FJ, atundi orice

3 3

Aplicind lema Iui Fark_a;s-Minkovski [7], rezults imediat ¢ sistemul
Agi=1, (2)
’ ll |
qnde A’ este transpusa lui 4, dar I=[! |, are o solutie unied y, > 0
! 0=
oricare ar fi 1> (. :
In particular, daci fn conditia a) punem
1
- Il
1
atunei condifia a) devine

n

O matrice care satisfa itia a’) si i
Beontion . ce conditia a’) si b) este de tip Minkovski-
TEOREMA 2. Daed
;)) ;’?'stem'ul Az > 0 admite cel pupin o soluie = > 0
wecare din sistemele A. = : osedd
e 6 A4 < 0,1 =1, 2,..., n, posedd cel DPUiin
3) Ch-<0 GEO ?z‘ .:«1 2 ) ] ) )
¥ siste;nului’(lf - ,p b z'th.i?)a” y Zyeeey M SU TG atunei orice colutie

Zy > 0.
2. 84 considerdm acum sistemul neomogen
Az = b, (3)

Pe ba;a, teoremelor 1 gi 2 ge Poate demonstra
EO 71 ; ;
PT 1R§£JA 23'a£a$? ::L;t:we?uﬁ @ sistemului (3) satisface ipotezele
% san 2, atu X solufre © a sistemului (3) satisface ¢ )
tateq 3.'3; ©, unde T este solufia sistemului Ay — b( A el
. Considerim urméitoar 3 :
. Cons area problem# de e lindard : g4
Se minimizeze forma liniars . SRR | RN ok

f—_‘(.cy @), m=(01,02,...,6n) (4)
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pe multimea solufiilor nenegative ale sistemului
Up =b, (5)

unde U este o matrice m X n.

B4 presupunem ¢
4 ¢
7= "5,

unde 4 satisface ipotezele teoremei 1 sau 2 gi C are toate elementele ne-
negative.

Atunci sistemul (5) se poate pune sub forma
(I) Az’ + Oz’ =1V,
(IT) Bo=1b".

Presupunem e¢d b = 0. Atuneci vom transforma sistemul (I) in-
tr-un sistem de egalitdti. Din acest sistem exprimém pe 2’ in funcfie de
restul necunoscutelor. Din teoremele 1 gi 2 rezultéi ¢d @' = 0 dae# cele-
lalte necunoscute sint nenegative. Tnlocuind pe #’ in (IT) gi in forma (4)
obtinem o noué problemi de programare liniari care are acelagi numéir
de necunoscute insd numai m — r inegalitéti, » fiind ordinul matricei 4.

Academia R.P.R., Filiala Cluj
Institutul de calcul

O HEKOTOPBIX CUCTEMAX HEPABEHCTB
C HEOTPUUATEJBHBIMI PEIMEHUAMU
NPUMEHEHUE K JUHENHOMY IPOIPAMMHPOBAHHIO

PESIOME

B pabore paloTca ZOCTATOYHEE YCJOBHA TOr0, 4TO0Bl cmCTEMa Hepa-
BEHCTEB HMEJIA BCE pPelleHns HEeOTPUIAaTeJTbHEIMU. B mocienueii gactu pe-

JaeTCA NIPUMeHeHIe K JIMHeHHOMY IpOrpaMMHDOBAHUI0, YKA3EHBAeTCA 9aCT-
Hadg 3ajaya JIMHEHHOr0 IpOrpaMMHUpPOBAHMA, B KOTOpPOll 9YHCJIO0 HEPABEHCTB

MOMHO YMEHbHOIUTH, HE U3MEHHA 9YHCJI0 HEeN3BeCTHHIX.

SUR QUELQUES SYSTEMES D’ INEGALITES A SOLUTIONS

NON NEGATIVES

APPLICATIONS A LA PROGRAMMATION LINEAIRE a

RESUME |

L’auteur indique les conditions suffisantes pour que toutes les solu-
tions d'un systéme d'inégalités soient non négatives. Dans la derniére
partie, il en fait une application & la programmation linéaire, en indi-



764 L. NEGRESCU 7

quant un probléme particulier de programmagtion linéaire, ot le nombre des
inégalités peut &tre diminué, sans entrainer la modification du nombre
des inconnues.
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