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1. Ne propunem să determinăm o clasă de ţesuturi, form ate din pa tru  
familii de suprafeţe care verifică generalizarea pentru  spaţiu  a condiţiei 
de închidere Reidemeister ; apoi să punem în evidenţă cîteva proprietăţi 
ale lor şi să le clasificăm din punct de vedere topologic. în  cursul deter­
minării acestei clase de ţesuturi va trebui să rezolvăm ecuaţia funcţională 
care exprimă că un izotop al sumei este de forma f(x  +  y) +  f i (x)- Pentru 
aplicaţiile avute în vedere, vom căuta soluţii continuu diferenţiabile, iar 
în ultima parte a lucrării vom extinde soluţia aflată pentru  funcţii absolut 
continue.

în  lucrarea i7 am introdus noţiunea de ţesut spaţial abstract (sau 
ţesut ternar) prin generalizarea proprietăţilor geometrice ale unui ţesu t 
obişnuit, form at din 4 familii de suprafeţe [3] şi am a ră ta t că aceste ţesu turi 
sínt echivalente cu clasele de izotopie ale cvasigrupurilor ternare.

Reamintim, că un cvasi-gmp ternar (Q, F) (sau o АГ-algebrä) este o 
mulţime Q, pe care s-a definit operaţia ternară

t F(x, y, z) (1)
(notaţia prescurtată : t — xyz), inversabilă în raport cu x, y  şi 2 , adică 
pentru a, b, c, <i € Q ecuaţiile

F(x, b, c) - - d, F  (a, y, c) -= d, F{a, b, z) =  d (2)
au cîte o soluţie unică în Q. Dacă există elementul neutru e 6 Q, astfel ca

F(x, e, e) Fix, v, e) == Fie, e, x) =  x, (3)

(Q, F) se numeşte un loop ternar.
Cvasigrupurile ternare (Q, F) şi (K, G) se zic izotope, dacă ex istă  tran s­

formările biunivoce /, g, h, k ale mulţimii Q pe R, astfel ca
G[/(*), g(y), h(z)] ^  к Fix, y, z)], X . y . z e  Q. (4)

(R, G) este un izotop al lui (Q, F), iar sistemul de transform ări /, g, h, k 
o izotopie. Dacă mulţimile G şi F  coincid şi k este transform area identică, 
(Q, G) este un izotop principal al lui (Q, F).
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Mulţimt a cvasigrupurilor ternare izotope cu evasigrupul dat (Q, F) 
formează, prin definiţie, un testit ternar. Oricare cvasigrup din această 
m ulţime este un reprezentant al ţesutului ternar. Dacă un reprezentant 
este un loop ternar, el se numeşte un L-reprezentant. Un ţesut ternar are 
to tdeauna B-reprezentanţi [7].

vStudiul ţesuturilor revine la studiul proprietăţilor cvasigrupurilor, 
invariante la izotopii. Pentru scopurile lucrării de faţă, ajunge această 
caracterizare algebrică a ţesuturilor şi nu vom insista la caracterizarea 
gecmetrică, am intită la început şi care se găseşte în lucrarea [7].

Dacă Q este un interval al axei reale şi F  o funcţie continuă, (Q, F ) 
p o artă  numele de cvasigrup ternar real continuu, iar dacă, afară de aceasta, 
F  admite derivatele parţiale de ordinul m continue, (Q, F) este un cvasigrup 
ternar diferenţialii de ordinul m. Ţesuturile corespunzătoare reprezintă 
cazurile clasice şi se numesc ţesuturi ternare reale continue (sau ţesuturi 
de suprafeţe) respectiv ţesuturi ternare diferenţiabilc de ordinul m. (Studiul 
lor clasic se găseşte în [3].)

Alături de cvasigrupurile ternare continue vom considera şi cvasi- 
grupurile locale, care se definesc în felul urm ător : fie V x, V.,, V3 trei veci­
n ă tă ţi ale axei reale; se cerc ca funcţia continuă (1 ) să fie definită pentru 
A' € V \ , y  € F 2,z £  F 3 şi ca să existe vecinătăţile V x C  IŢ, F „ c F 2,F 3 C F 3, 
V 4 Э F (x 0, y 0, z0) (x0 ç V v y 0 e V 2, z0 6 V3), astfel ca pentru a ç V x ,
b Ç V 2 , c 6 V 3 , d £ V 4 , ecuaţiile (2) să aibă cîte o soluţie unică în l \ ,  V2 
respectiv  V3. Un cvasigrup local se va nota to t cu (Q, F). în  conformitate 
cu aceasta, avem un loop ternar local, dacă în particular V1 =  V2 =  V3 =  V, 
x 0 =  Уо =  гь =  e Şi condiţia (3) este satisfăcută pentru x Ç V. Dacă 
/, g, h, k din (4) sínt transform ări topologice şi (4) este verificat pentru 
orice x  £ Fj, y Ç V 2, z ç F 3, avem o izotopie locală. Un ţesut local se defi­
neşte  ca mulţimea cvasigrupurilor ternare locale, local izotope cu un 
cvasigrup ternar local.

Definiţiile date p îră  aici, sínt generalizări directe din teoria cvasi- 
g rupurilcr binare (obişnuite) [2], [5], [6], în care în locul operaţiei (1) 
avem  o operaţie binară. Un cvasigrup binar se zice regulat, dacă este izotop 
cu un grup, un ţesut bir.ar este regulat, dacă printre reprezentanţii lui se 
a flă  un grup. Condiţia de închidere a lui R e i d e m e i s t e r

este necesară şi suficientă pentru ca evasigrupul binar (Q, F) cir operaţia 
F(x ,  y) =  xy, să fie regulat. Condiţia (R) este invariantă la izotopii.

în  conform itate cu o teoremă celebră a lui U. K. J. B r o u w e r ,  
orice grup continuu, definit pe un interval real, este izomorf cu grupul 
ad itiv  al numerelor reale [4]. Rezultă, că orice cvasigrup real continuu 
regulat are o operaţie de forma

xy =  h 1 ./{.>) +  g(y)l, (5)
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unde /, g, h transform ă biunivoc şi continuu (adică topologic) intervalul 
Q pe axa reală. Teorema lui В r o u \v e r poate fi extinsă pentru  grupuri 
locale, definite pe un interval real (a se vedea ecuaţia funcţională a asocia­
tiv ită ţii în [11 ) ; deci orice cvasigrup local regulat are de asemenea o operaţie 
de forma (5). De aici se deduce uşor că ţesuturile obişnuite regulate coincid 
cu imaginile topologice ale ţesutului format din trei fascicole de drepte 
paralele. Aşadar pe această cale se obţine în mod simplu rezultatul clasic 
al lui Reidemeister.

Fie (Q, F ) un cvasigrup ternar şi : y un clement fix din Q. Operaţia 
binară (x, y) —* F { x , y , z n) defineşte un cvasigrup binar pe Ç, num it o 
secţiune z a cvasigrupului ternar (Q, F). Analog putem defini secţiunile 
x  şi secţiunile y.

In teoria clasică, un ţesu t de suprafaţă se zice regulat, dacă este ima­
ginea topologică a pa tru  fascicole de plane ; această definiţie revine la 
faptul că operaţia unui reprezentant oarecare este de forma

xyz =-- /c-3 [/(.r) -F g(y) — //(£)], (6 )

unde /, g, h, k sínt funcţii strict monotone şi continue. Condiţia necesară 
şi suficientă pentru ca un ţesut de suprafaţă să fie regulat este

*2УDi ^  UDA == л-iJV-s — -v,.v222 =  x2y\z2 =  x2y %zx (O)
(condiţia octaedrelor). Aceste ţesuturi se mai numesc şi ţesuturi octaedrale. 
Noi vom folosi această terminologie, term enul de regularitate fiind păstra t 
pentru o noţiune mai largă. în  lucrarea [7] am studiat regularităţi de 
diferite tipuri (regularitate 1, 2, 3 şi regularitate tare), iar în conform itate 
eu lucrarea [8] un cvasigrup ternar se zice regulat, dacă satisface urm ătoarea 
condiţie ele închidere, num ită condiţia lui Reidemeister generalizată :

ХтУ A  =  Хзуагя 
x&v-h =  -ЧУзЬ 
x iy 2zl — х3у4г3
•Tl>’l ~ 2  = ' х з У з г 4

Ч У 2 ~ 2  ■ Х 4 У 4 г 4- (RG)

Se vede că această condiţie este invariantă la izotopii, deci putem  defini 
ţesu tu l te rn a r ca regulat, dacă un reprezentant al său este regulat. S-a 
dem onstrat în [8] că fiecare din urm ătoarele condiţii este necesară şi sufi­
cientă pentru regularitatea unui ţesu t ternar :

a) Toate secţiunile x ale unui reprezentant sín t izotopi principali 
ai unui şi aceluiaşi grup, la fel secţiunile y  şi z (cele trei grupuri pu tînd  
fi diferite).

b) Un U-reprezentant verifică implicaţia
abc —• e => xyz =  (xbc)(ayc)(abz), a, b, x, y, z ç Q.

(Cînd utilizăm  condiţia a) ca suficientă ajunge să o cerem pentru un 
singur reprezentant, aşa cum s-a enunţat, iar cînd ea apare ca o condiţie 
necesară, putem  s-o aplicăm pentru  fiecare reprezentant. O observaţie 
analogă e valabilă pentru B-reprezcntanţii din condiţia b).)
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în  lucrarea [1 0 _. s-a mai dat o a treia condiţie necesară şi suficientă :
c) Operaţia ternară  a unui L-reprezentant se poate scrie în trei moduri 

cu ajutorul unor operaţii de grup v о у, x * у, x \  у (x°, x*, ,rv notează 
elementele inverse ale lui .v în cele 4 grupuri, definite pe aceeaşi mulţime 
ca şi L-reprezentantul) :

xyz =  (X v y )  O y° o (y * z) -- (x у  у) if. x * if (x o z) =  (x oz)  y z V  v ( y * z ) .  (7)

în  lucrarea 0 0  s-a studiat mai am ănunţit cazul particular al ţesu­
turilor regulate continuu diferi nţiabile de ordinul întîi. în  acest caz 
L-reprezentanţii sínt de forma

■w: o 1 9 (.v) - o(_v) — o (.:)], (8 )

unde 9  este o funcţie strict monotonă, care admite derivată continuă. 
Un loop ternar cu operaţia (8 ) este un grup ternar. în  aceeaşi lucrare s-a 
a ră ta t că ţesuturile  locale regulate, continuu difere nţiabile de ordinul 
întîi, au operaţia L-reprezentanţilor de forma

9 (a) ; k

9 1 ;) 9 (,n  — k

unde 9  are semnificaţia de mai sus, iar к este o constantă diferită de 1 . 
Invers, pentru orice astfel de 9  si k, formulele (8 ) şi (9) definesc evasi- 
grupuri ternare (locale) rigulate. Acest rezultat s-a obţinut prin rezolvarea 
sistemului de ecuaţii funcţionale (7), funcţiile necunoscute fiind o , * şi y.

în  lucrarea de faţă vom arăta că ţesuturile locale, continuu diferen- 
ţiabile de ordinul întîi au acei aşi structură  (8 ) şi (9) în condiţii mai largi 
decit regularităţi a. Ş i  anume vom admite că secţiunile ;v şi у ale unui L- 
reprezentant sínt izotopi principali cu cite un grup. Y a rezulta ca o conse­
cinţă că secţiunile 1 sínt şi ele izotopi principali cu un grup.

Pentru a ajunge la acest rezultat л о т  rezolva pe parcurs ecuaţia 
funcţională

/' V +  v) -j- ţ A(x) -- Ф p(x) +  i/fy) . (10)

provenită din primii term eni ai relaţiei (7), unde o şi * sínt operaţii ele 
grup, iar ^  o operaţie de loop. Cele cinci funcţii clin ecuaţia (10) sínt funcţii 
necunoscute, presupuse continuu diferenţiabile şi strict monotone (cu 
excepţia lui Д). Ecuaţia  (10) fiind interesantă şi în sine, vom da în ultim a 
parte a lucrării soluţia ei în ipoteza de continuitate absolută. Soluţia 
astfel extinsă nu o vom aplica la teoria ţesuturilor din următoarele motive : 
1 . s-ar obţine o clasă de ţesuturi, care se situează între cele continue şi cele 
diferenţiabile, greu de precizat şi fără interes deosebit, 2 . generalizrea 
făcută o considerăm provizorie, căci avem impresia că soluţia ob ţinu tă  
se extinde la cazul continuu.
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Din structurile (8 ) şi (9) ale ţesuturilor regulate (globale respectiv 
locale) decurg, iu ipoteza de derivabilitate continuă, o serie de proprietăţi :

Pentru un ţesut global condiţiile (RG) şi (O) sínt echivalente. Ţesutul 
fiind local, condiţia (O) atrage (RG), dar invers nu.

Să considerăm în spaţiul euclidian tridim ensional 4 fascicole de plane 
şi să ne restrîngem la un domeniu care nu conţine niciun punct din supor­
turile acestor fascicole. Imaginile topologice ale acestor ţesuturi coincid 
eu ţesuturile cu proprietatea (RG).

Toate ţesuturile octogonale sínt topologic echivalente. Ţesuturile 
locale regulate se îm part în 5 clase de ţesu tu ri topologie echivalente.

2. Fie ((Л F) un P-reprezentant al unui ţesu t ternar. Xotăm pre­
scurtat

t F(x, y, 2 ) ----- .rye, (11)
şi fie e elementul neutru. Presupunem că are loc următoarea proprietate

Tonic secţ iuni le X sínt  i wt o f n  pr inc ipi  d i  ai  u n n i  şi  aceluiaşi  ţ 
%ntp,  de asemenea secţ iuni le  r. j

Proprietatea P  nu depinde de I,-reprezentantul ales, deci aparţine ţesutului.
Avem

.ev-- 9 ,(.v, у) o Vi(.V, :).
unde * şi o notează cele două operaţii de grup, o(x, y), y(.v, z) funcţii 
inversabile de у respectiv z, cînd x este fixat, iar y x{x, у), фх(у, z) funcţii
invcrsabile de x  respectiv e, cînd y este fixat. Putem  admite că elementul
neutru al grupului (Q, * ) este e, căci dacă acest element neutru ar fi 
s yC e, n-avem decît să trecem la un grup izomorf prin transform area
Tx  —• .V * s“ 1, x Ç Q. Pa fel admitem că grupul (Q, o) are elementul
neutru e.

A rătăm  întîi
cyz - у * xez - .v o :. ■ (13)

Din (12,) se obţine
г =  eez ----- o(e, e) * ù(e, z) 
y -  eye - o (с, у) * <L(e, e),

de unde

?(g у) -=-■= y * № • <■')*> 'Te  ~) ?(e  P* * 2
(.V* notează elementul invers al lui x  în grupul ((4, *), iar .г° în grupul 
((Л o ) ;  deci (12,) devine pentru  ,v .- c

eyz =  у  * y(e, e)* * 9 (1’, e)* * c.

înlocuind aici y e, z — e, se determ ină Ç(e, e)** <p(e, e)* — e ; aşadar 
prima formulă (13) este stabilită  ; le fel se obţine formula a doua.
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înlocuim  în (12j) y =  e şi ţinem  seama de (13) 

x o z =  y(x, e) * ф(.т, z),
deci

P(x, z) =  <p(x, e)** (x о z) 
xyz =  cp(.r, y) *<p(x, e)* * (x о z).

Relaţia (14) devine pentru z =  c

<p(x, y) * o(x, e)* * x =  xye.

Notăm  operaţia binară

xye =  x xj y,

care defineşte un loop pe Q. Din (14), (15) şi (16) se obţine

xyz — (x y  y) * x* * (x o z). (17)

în  mod analog obţinem

xyz  =  (x y  y) О y° о (y * z). (18)

Reciproc, dacă un loop ternar (Q, F) admite descompunerile (17) 
şi (18), secţiunile л; şi y sín t izotopi principali ai grupurilor (Q, * ) şi (Q, o), 
deci (Q, F) adm ite proprie ta tea  P.  Astfel am dem onstrat

I íEMA 1. Condiţia necesară şi suficientă pentru ca un loop ternar (Q, F) 
să aibă proprietatea P, constă în existenţa simultană a descompunerilor (17) 
şi (18) cu două operaţii de grup *, o şi o operaţie de loop y.

P en tru  a cunoaşte mulţimea loop-urilor ternare cu proprietatea P  
va trebui deci să determ inăm  operaţiile de grup * şi o şi operaţia de 

loop binar y, astfel ca să verifice ecuaţia funcţională

(x y  y):{: x* * (x o z) =  ( V y  y) O y 0 о (y * z) (19)
pentru  x, y, z ç Q.

Să considerăm, pentru  un moment, cazul particular

.г y  y =  x о y. (2 0 )
Ecuaţia (19) devine

x  о (y * z) =  (x O y) * X* * (x O z)
sau

V* * [x о (y * z) ] =  X* * (x о y) * x* * (x O z).

(14)

(15)

(16)

Folosind notaţia

T  Ay) -  .r** ( . toy),
ecuaţia funcţională devine

ТАУ * г) =  T Ay) *■ T  Az),

(21)
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deci T x este un automorfism al grupului (Q,*). Ţinînd seama de formula 
(2 1 ), avem

* о y •= X * TAy)  (2 2 )

şi putem  enunţa
P u m a  2. Dacă grupurile (Q, *) şi (Q, o ) sínt legate cu relaţiile (19) 

şi (2 0 ), atunci operaţia de grup o se deduce din operaţia de grup * prin 
intermediul formulei (22). unde T  este tin automorfism al grupului (Q, * ), 
care depinde de x.

îl. Să particularizăm  mulţimea Q la un interval 'al axei reale, iar 
(Q, F) la un loop ternar continuu. Pentru  a plasa însă acest stud iu  într-un 
cadru mai general, nu vom mai presupune că (Q, F ) este un loop global, 
ci unul local.

Observăm întîi că demonstraţiile celor două leme stabilite sínt vala­
bile şi pentru un loop ternar local. In  definiţia proprietăţii 1’ urmează 
să considerăm secţiunile x şi y pentru x respectiv y luaţi a rb itrar dintr-o 
vecinătate a elementului e. Sínt valabile deci următoarele leme :

P uma P. Condiţia necesară şi suficientă pentru ca un loop ternar 
local (Q, F) să aibă proprietatea P, constă în existenţa simultană a descom­
punerilor (17) şi (18) cu două operaţii de grup binar local* şi o şi o 
operaţie de loop binar local y.

P uma 2'. Dacă grupurile locale (Q, *) şi (Q, o ) sínt legate cu relaţiile 
(19) şi (2 0 ), presupuse valabile pentru o vecinătate a elementului neutru atunci 
operaţia o se deduce din operaţia* prin intermediul formulei (2 2 ), unde 
T x este un automorfism local al grupului local (Q, *), care depinde de a.

P'ie (Q, F) un loop ternar local cu proprietatea P. Putem  aplica lema 1', 
iar pentru  cele două operaţii o şi * avem

x o y  =  g - 1 [g(x) +  g (y) ] 
x *y  =  h~l [h{x) +  h{y)],

a şi y  fiind arbitrare într-o vecinătate V a elementului e. Funcţiile /  şi g 
îl transform ă topologic pe V  într-o vecinătate a lui 0. Avem

Şi

Ţinînd seama că

g(e) =  0 , h(e) =  0  

g{x°) =  -  g{x), h(x*) =  -  h[x).

(24)

g{Xl ox°2o x3) =  g{Xl) -  g(x2) +  g(x3) 
h(X l* x2 * x3) =  hţxA — h(x2) +  h(x .ţ), 

ecuaţia funcţională (19) devine

g ^ \ g { x v  y ) - g ( y ) + 8 l r l  [% )  +  4 Z)Ÿ) =  h ^ {h {x x jy ) -d i { x )F h {x o z ) } .  (25)
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Deosebim două cazuri :

a) g(x'çy) g (у) и и depinde de y, urica ее ar fi x (■ V.

Avem
£ ( - ' T ) ’ ) -  &{y) =  Ф (*)  ;

înlocuind у e, deducem ф(х) g(xye) — g{e) --- g(x), deci

■w>’ - -  d \ Ф )  Ь a(y)í x °y
Diu Ierna 2 ' obţinem

.voy -• .V* Y\ij ).

unde '1\ -- T  este un automorfism local al grupului local (Q,*), adică

i (y * i) -  Т(У) * T{z), y, z € V
sau

YVi" 1 [h{y) -i h{z)■ -  h 1 J i î \ y )  +  hT(z) j.

Scriind h(y) — u, h(z) == v, n şi v sínt numere reale oarecare, suficient 
de mici şi

h'Yh l (u -{- — hTh !(u) -f- h'Yh l (v).
Deci

h'Yh"l (u) C(v) • г»
Г / ’ti.vi Л -'.Г (.г)- /dy)j (26)

л- о у =  h ' [h{.х) -f- С(х) ■ /i(y) J.

Dar X о y — y о X,  deci

ä(x) -t- C(x)h(y) - h(y) -i- C(y)h(x) ; 

punînd aici y — y0, obţinem

С (л ) --- íiA(.r) -ţ- 1, (27)
unde constanta a C(y0) 1 .

Dacă a =  0, obţinem C(x) -- 1, ,v о у — .r * у - - vyy şi

F(x, y, z) =ч v o y  o r  - h~l [h{x) — h(y) -f h(z) j, (28)
deci iu acest caz (Q, F) este un grup ternar.

Dacă a şz£ 0, formula (26) devine

v o y  --- h~l [ah(x)h(y) ~r h(x) +  A(y)j, 

iar operaţia loop-ului ternar local (Ç, F)

F(x, y, z) — X o (y* z) =  h 1 {a ■ h(x)\h(y) — )i(z) ] +  h(x)+h{y)  +  A(z)}.
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Pulem scrie

hF{x, y, z) ui ■ h(x) - ! h(y) ----- h{z) ■ li(x)
sau

a ■ fiF(x, y, z) -f- I — a ■ h(x) • 1 (]rt ■ h(y) — 1 -г Г«Л(-)-г1 ] 1 ).
Notînd

9 (.r) a ■ h(x) -i- 1 , (29)

<p este o transform are topologică a miei vecinătăţi a lui c în axa reală, ca 
si h, şi avem

9 (c) ab(y) -r 1 -=- 1Ş1 ЩХ, y, Z) =: 9 - ' ( 9 (x) to(y) -  o(z) -■ 1 ;>. (30)

Rezumînd acest caz a), enunţăm
PiîMA 3. Un loop ternar local (Q, F), care admite descompunerile (17) 

şi (18) cu trei operaţii dc grup local*, o , y, dintre care ultimele două 
coincid, are o structură determinată de formulele (28) sau (30), unde h res­
pectiv 9  sínt funcţii continue şi strict monotone. Reciproca este evident ade­
vărată.

Formula (28) atunci şi numai atunci este valabilă, dacă cele trei ope­
raţii * , о , у  coincid.

Loop-ul ternar local cu structura (28) poate fi considerat cu restrîn- 
gerea unui loop ternar global. Dimpotrivă, un loop ternar local cu struc­
tu ra  (30) nu poate fi extins la un loop ternar global. în tr-adevăr, se vede 
din (30), că dacă <p(x) >  1, 9 F(x, x, x) >  [<?{x)i2 şi astfel în cazul loop-ului 
ternal global definit de (30), y(.r) trebuie să ia valori oricît de mari, de
asemenea valori oricît de mici. Iar, dacă <p(y0) - 9 (2 ,,) =  —, F(x, y 0, z„)

ia aceeaşi valoare 9 ~ J(0 ), oricare ar fi x, ceea ce e în contradicţie cu con­
diţia  (2). Deci are loc

I/KMA 4. Un loop ternar global continuu (Q, F), care admite descom­
punerile (17) şi (18) cu trei operaţii dc grup«,  o ,  y, dintre care ultimele 
două coincid, are o structură determinată dc formula (28), deci este un grup 
ternar şi toate cele trei operaţii « , o , у  coincid.

b) Există xK Ç V  astfel ca g{xn \ y )  — g(y) 9 ^ const. înlocuim  iu 
relaţia (25) x =  x 0

g(xn y  >') - g{y) F  gh- l \h(y) -r h(z) j =  gh -1 {h (x0 y  y) -  h(x0) +
F h ( x 0oz)}.  (31)

Notăm
/ eh ' (32)

h(y) =- и. h(z) =  V ;
и şi V sínt valori arbitrare dintr-o vecinătate suficient de mică a originii. 
Ecuaţia (31) devine

f(u -r v) -r /j (n) =  t\p(n) — (](v)}, (33)



48 F. RADO 1 0

nude s-a notat

fi(u) =  g[*oVA_1(M)] -  gh~l {u) const.
-p[u) =  h [ x 0 v ă - ’W ;. q{v) =  h[x0 o h ^ ( v ) ]  -  h(x0).

IviîMA 5. Un loop ternar local cu proprietatea P are sau structura (28) 
sau (30) sau se bucură de proprietatea următoare : operaţia lui poate f i  scrisă 
sub formele (17) şi (18) cu grupurile locale o şi * furnizate de (23), iar 
funcţia f, definită prin (32), satisface, pentru и şi v suficient de mici în 
valoare absolută, ecuaţia funcţională (33), unde f, p, q sínt funcţii continue 
şi strict monotone şi Д o funcţie continuă, care nu se reduce la o constantă.

4. Vom rezolva în punctul 5. ecuaţia funcţională (33) în condiţii mai 
restric tive  : vom căuta funcţiile necunoscute /, p, q, f1 în clasa funcţiilor 
care adm it derivată continuă. Pentru  a putea apoi aplica această soluţie 
la loop-urile ternare locale diferenţiabile, vom avea nevoie de

P uma 6 . Fie

g(x o y) - -- g(x) -j- g(y) (34)

şi să presupunem că funcţia g este continuă şi strict monotonă pe intervalul I , 
valorile lui g îl conţin pe 0  şi funcţia G(x, y) =  x o y  admite derivata par­
ţială G'x(x, y) continuă pentru x ç I , y  ç / . Atunci există o vecinătate a 
lui e =  g~*(0 ), conţinută în I, pe care g admite o derivată continuă.

I) e m o n s t r a ţ i  e. Avem

G(x, e) -= x o e — x 
G'x (x, e) =  1,

deci există o vecinătate a lui с V e С  I,  astfel ca

G'x (x, y) >  0, dacă x, y Ç Ve.
Form ula

'- ''/ '(л . У) \ ' G'x (x, y) =  g'(x) (35)
este valabilă dacă x, у  6  V f şi g'(x) există. Ori g’(x) există în punctele 
lui V c, dacă facem abstracţie de o mulţime de puncte de măsură nulă. 
Ţinînd seamă că G(x, y) este un grup local, există VeC V e astfel ca pentru  
a € V'e, c ç Vi  ecuaţia

G(a, у) =  c (36)
are o soluţie y  în Ve. Fie acum a Ç V ’e astfel ca g'(a) să existe, c element 
oarecare în V'e şi y 0 soluţia ecuaţiei (36). Pentru x  =  a, y — y 0, relaţia 
(35) devine

g'(c) ■ G'x(a, y 0) =  g’(a), (37)

de unde rezultă că g'(c) există pentru  c € V'e. Păstrînd pe a fix în (37) 
şi făcînd pe y 0 şi c să varieze, astfel ca să avem mereu G(a, y 0) =  c, se 
deduce din continuitatea funcţiilor G si G'x că g' este o funcţie continuă 
în V I
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Consecinţă . Dacă (Q, F) este un hop  ternar local, continuu diferen- 
ţiabil, atunci funcţia f, dată de formula (32) admite o derivată continuă 
în vecinătatea originii.

5. Vom rezolva acum ecuaţia funcţională
f{x +  У) F  fi(x) =  Ф|lp(x) +  q(y) ], X,  у  € /  (38)

care conţine ecuaţia (33), ca un caz particular. î n  ecuaţia (38) figurează 
cinci funcţii necunoscute. Am trecut de la ecuaţia (33) la (38), pentrucă 
această din urm ă prezintă interes şi în sine, membrul al doilea fiind un 
izotop oarecare al sumei şi astfel prin ecuaţia (38) se determ ină izotopii 
sumei de forma f(x  +  y) -f- f^x) .

Căutăm soluţia (/, Ф, p, q, f) astfel ca primele patru  funcţii să fie 
strict monotone şi cu prima derivată continuă în intervalul / ,  care conţine 
originea, iar a cincea funcţie Д (a cărei clerivabilitate continuă rezultă 
imediat) să nu fie o constantă, l ’rin această ipoteză ultim ă excludem soluţia 
trivială Д =  const, /  oarecare, Ф =  /, p(x) =  q(x) — x. Se presupune 
de asemenea că domeniul de definiţie al funcţiei Ф conţine valorile 
p(x) +  q(y), X, у  €

Derivînd ecuaţia (38) în raport cu x şi у  obţinem 
f'{x -f y) -  f\(x) =  Ф,rp{x) F  q{y)]p'{x)

f'{x -  У) -= Ф' lp(x) +  q{y)]q'(y). (39)
P'uncţiile /" şi q' nu se anulează în I.  îu tr-adevăr, dacă am avea y 0 ç I, 

Ч'{Уо) = 9 ,  atunci f'{x +  y0) - - 0 pentru orice x ç I,  în contradicţie cu 
monotonia strictă a funcţiei f(x). Din f'(c) — 0 rezultă Ф’ [p(x) -f-^(c — #)] = 0 , 
ceea ce înseamnă că Ф' se anulează pe un interval, adică o contradicţie.

Prin îm părţire obţinem din (39)
_ J  ___ A(.V) _ 1_______ 1_

f '{x  ■■ v) / j  (.v) ч'(у) f^ x )

sau notînd G . = 1//', P  =  p ’\f\, Q ^ 1 jq’, R  =  — 1 //,,
G(x -f y) - P(x)Q(y) +  R(x), (40)

unde G şi Q sínt funcţii continue pe / ,  P  şi R  funcţii continue pe un 
interval Г  C  / . în  aceste condiţii funcţiile P, Q. R, G sínt indefinit deri- 
vabile [9(. Obţinem, prin derivare în raport cu y, ecuaţia funcţională

G'(x -Í- y) P(x) ■ Q'(y) 
şi se- cunoaşte că soluţia generală a acesteia este

G'{x) аус\,
unde «j şi Cj >  0 sínt constante. Deci

G(.r) -- +  bv

a.,t J ; - uv
f(x) — к lu (ac1 -j- b) (41)

(a2, bv я ÿé 0 , b, k () şi c > 0  sínt constante).

4— Babeş—Bolyai: Mcitemalică-Fi/icd I 19í>4
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Aşadar, o funcţie /, care verifică ecuaţia funcţională (38) împreună 
cu patru  funcţii din clasa de funcţii specificată, este de forma (41). Pentru 
aplicaţiile în teoria ţesuturilor ne ajunge funcţia f  (x). Dar ecuaţia (38) 
este in teresantă şi independent de această aplicaţie, precum am observat, 
de aceea trecem acum la determ inarea celorlalte patru  funcţii necunoscute. 

Scriind p(x) — u, q(y) =  v ecuaţia (38) devine

Ф(м +  v) - t i p l i n )  —
care are exact aceeaşi s tructu ră  ca şi ecuaţia (38), iar condiţiile impuse 
pentru  p şi q a trag  aceleaşi condiţii pentru f> 1 şi </ 1. Rolul lui /  fiind 
preluat de Ф, avem

Ф(jc) == k' In (a'c'x +  b’), (42)

unde a' şA 0, k'  0, c' >  0 sin t constante. Cele 8  constante, care figurează 
în expresiile (41) şi (42) nu sínt independente. Notînd

k =  fc'oc, c’ =  cP, ţp(x)  =  p\(x), ß?(y) 6/i(y), f2(x) =  e*/(

şi înlocuind expresiile (41) .şi (42) în ecuaţia (38), obţinem

[(acx~v +  b)f2(x)]% ---- a'ct’'l-'! : q'{y) +  V . 

K cuaţia (44) furnizează pentru  x =  0

a c<h{y) A (ar -  b f  -г В  ;
astfel (44) devine

\{acx+v+ b)f2(x) |a - .1 (ar' +  b)° -p B]cMx) +  //.
Considerăm aceeaşi ecuaţie pentru у =  0 şi le îiupărţim

{acx l'y +  b)a J(<icy -I- b f  +  ß Jcpi<-x) -I- b ’.!(« • !- b)a + B cpM -!- //
după un calcul simplu rezultă că

iacx+y Uu' hf
(acy -I bf  -  I<i M funcţie de .v.

X (*)

Notînd p(x) =  (acx -'r  b)%, avem
■ţ(v п yU')4(.v) v«>)

Ф ( *  +  у) ----- х ( * ) ! Ф ( у )  -  v ( ° ) ]  +  Ф(л')-
Această ecuaţie este de tipul ecuaţiei (40), deci

’b(x) — /1 , y 1 ~  — (acx -}- b) ° ;
rezultă (după derivare)

a  -= 1.

(44)
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Relaţia (44) se seric

( « с ' ' ' '  -( b)f.,(x) ac1’1'11 ‘:'<v) - f  b‘ ; ( 45 )
înlocuind л - 0 , obţinem

c"'(v) - -- r  +  b'bv (46)
".

unde al şi bl sínt constante. Dacă by -- 0, rezultă uşor că toate funcţiile 
necunoscute sínt liniare, bă presupunem acum că by^zzO. Scădem din 
(45) aceeaşi ecuaţie pentru v O ; ţinînd seamă de (46) şi simplificînd 
se* obţine-

/■A-v )  - a\
ecuaţia (45) devine

c />,(0 . . .  <*'<> 
axhf c 1 a'by.

Aşadar

f(x) к In (ac' - b)
Ф ( л - ) к In ( a'c‘’ -  V)
PA') j l o g ( a’h —X f]- с а Ьл"F
? < - v ) ! i « . g  (  "  Ï ■ l  " l cx T b'by J
hH к In 1 Í  ' i

Se constată prin înlocuire că funcţiile (47) verifică ecuaţia funcţio­
nală (38).

T kok km a 1. Soluţia generală a ecuaţiei funcţionale (88) in clasa func­
ţiilor siriei monotone şi continuu diferenţiabilc pentru j, Ф, p, q şi pentru 
/j ẑf const., este dată de formulele (47), unde « ^ 0 ,  a'yăO, d y ^ O ,  
b, b' yăzQ, by, к, ß 0  şi с >  0  sínt constante arbitrare sau toate funcţiile
soluţiei sínt liniare.

Soluţia generală a ecuaţiei (33) se obţine din soluţia (47) a ecuaţiei 
(38) punînd a' ----- a, b' b, ß ~~ 1.

(î. Fie iarăşi (Q, F) un loop ternar local, continuu difereuţiabil, cu 
proprietatea P. Să presupunem  că structu ra  lui nu se exprim ă cu for­
mulele (28) şi (30), adică ne plasăm în cazul b) al punctului 3. în  confor­
m itate cu Ierna 5., operaţia acestui loop admite descompunerile (17) şi 
(18), unde operaţiile o si * sínt date de (23), iar funcţia (32) / — gh~l 
are forma (41) (s-a ţinu t seama de consecinţa lemei 6  şi teorema 1).

Acuma sîntem  în măsură de a determ ina operaţiile binare o, * si 
\7 şi apoi operaţia ternară  F(.r, v, :).
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Să notăm ф(.г-) =  c*<*) ; (48)
atunci tp(e) =  chW =  1 şi (23z) devineл-* у =  ср̂ 1[ф(л:) • ф(у)j. (49)
Mai departe,

g(x) =  fh(x) =  k In (achi-x) +  b) =  k In [йф(.г) +  b] ; 

punem condiţia g(e) =  0 , ceea ce conduce la

6 = 1  — a.

Operaţia o se exprimă după formula (23j) în felul urm ător :

k In [яф(.г'оу) +  1 — a~\ — k In [яф(л:) +  1 —я] +  k In [яф(у) +  1 —я]
х о у  =  ф -Чйф ^'М у) +  (1 -  й)[<?{х) +  ?(>’) -- 1 ]>- (50)

înlocuim  expresiile (49) şi (50) ale operaţiilor * şi o în ecuaţia (19)
яф(д- V у) 9(у) 9(.г) -h (1 — я) 'ç(* V .v) -  9O') I- 9O') 9О) __

«9(.п • 1 - яçl.r \7 v) { «p(.r) 9!;) ■ ( 1 — «I o m  -■ 91.'! 1 } (’ ’ l)
9 ; V)

Această relaţie determină operaţia у  :

sau punînd

Г у  у =  ф 1 9 ! -v 9  (У1яф(д) ç(_v) — «9 (r) — «9(91
poate fi pusă sub forma1 -  “ ! 1 1- -j- a Í 1 ■■ a

9í,r V y) 9 I 1 ofri
у (x) - = e x p 1 -■ f! 9! A) — a ’

(52)

avem
v(* v y ) =  ÓM — v(y), (53)

deci (Ç, v) este local izomorf cu grupul aditiv al numerelor reale.
Formula (17), saucci doi membri ai egalităţii (51), furnizează expresia

?I 7(x . У, z) =" -  ?(У) 

sau notînd (1 — a) ja = k

F(x, y,

>(?{■ ) ?( .1 — (1 — al 9 ' 0"9 î 1 9I.V 1 - «9 1 ' "9
,, -1 9  (0

oi-10 h ■ '
9 1 1 ' 1• t.

1
9  (y) 91.19 ev) -- 1 (54)
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T eorem a  2. Un loop ternar local (Q, F) continuu diferenţiabil, cu pro­
prietatea P are sau structura (28) sau (54), unde k este o constantă diferită 
de — 1 şi <p (respectiv h) o funcţie strict monotonă şi continuu diferenţiabilă, 
care transformă o vecinătate a lui e intr-o vecinătate a axei reale, care conţine 
punctul unitate (respectiv originea).

Trebuie să arătăm  numai că struc tu ra  (30) este conţinută în (54), 
ca un caz particular.

Să observăm întîi că în formula (54) variabilele x, y, z au un rol 
simetric [1 0 ]. în tr-adevăr, scriind

?(*)
I

9iM Şi k
1

obţinem

şi scriind

obţinem

F{x, y, z) =  cp,

<Pi(*) =  { h  +  l)<p2(*)

F{x, y, z) =•= ф2 - 1

<Pi(v) - , 9iD) - 1n%
<PiM +

1 <pd*) -  1

<Pi(d <Pi(-v) + *1

-  h şi kx = -  -  
^2

9-2V) -i , -  1 k292U) + *2
1 9з<г) -  1

92(.t) <p, (г) -I k.

(54')

(54” )

Valorile k =  0, — 1, oe se transform ă în k1 =  oo, —1,0 şi k2 ----- —1, oo, 0. 
Valoarea k == — 1 este excepţională, ea corespunde la a — со şi formula 
(54) nu dă un loop ternar. Dar k — 0 sau oo pot fi considerate.

Punînd în formula (54) şi în cele deduse prin schimbarea rolurilor 
variabilelor k =  0 sau со, se obţin structurile analoage cu (30).

Din teorema 2 deducem imediat
T eo rem a  3. Dacă secţiunile x şi у ale unui loop ternar local, continuu 

diferenţiabil, sínt local izotope cu cite un grup, atunci şi secţiunile z au 
această proprietate. 7

7. în  acest punct vom aplica teorem a 2 la teoria ţesuturilor locale, 
continuu diferenţiabile, pe care le vom numi ţesuturi T. Ţesuturile T  
sínt form ate din patru  familii de suprafeţe, continuu diferenţiabile, aşezate 
într-un domeniu D al spaţiului euclidian tridimensional. Dacă domeniul 
D cuprinde întregul spaţiu, avem un ţesut global T, în caz contrar un 
ţesut local T .

După cum am a ră ta t în punctul 1, un ţesu t T  este octogonal, dacă 
verifică condiţia (O); el este regulat, dacă verifică condiţia (RG). Ţesuturile 
T  octogonale sínt topologic echivalente cu un ţesu t format din 4 fascicole 
de plane paralele.
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^ - r e p r e z e n t a ţ i i  ţ e s u t u r i l o r  loca le  T  r e g u la te  a u  p r o p r i e t a t e a  1 \  d ec i  
li se p o t  a p l ic a  t e o r e m a  2, a ş a d a r  a u  o p e r a ţ i a  d e  f o r m a  (28) s a u  (54). 
R e z u l t ă

T k o k  км л 4. Un ţesut local T  regulat are un reprezentant de forma 

t _  • V  + ^  + " . , (55)
4,.v -Í Ii.,у  4■ C , z  D 3 '

unde A ,, B,, C it D ,, i 1, 2 sínt constante. Invers, orice ţesut local definit 
prin formula (55) este un ţesut local T  regulat.

Intr-adevăr, dacă formula (28) este valabilă, aplicam izomorfismul 
h(x) —* X şi obţinem formrlla (55) cu A l — / ',  C\ I)2 1 si I ) l
— A., В., C., — 0. Dacă formula (54) is te  valabilă, aplicăm izotopia

AAyy  1 

<pW 4- /<
1

ş i r -+y> (Z)

şi se obţine o expresie de forma (55).
Reciproc, dacă se dă (55) şi А.г : В., С.,

?(<) -* t

О, (55) este izotop cu
t - .г 4- y  -j- z, (56)

c a r e  e s te  t o c m a i  (28) c u  h(x) x.
D a c ă  A . ,  />’, Г ,  ~=• 0  ( a tu n c i  în  m o d  n e c e s a r  . 4 , ^ - 0 ,  B 2 ÿ z£ 0,

C2 căc i  a l t fe l  (51) n - a r  de f in i  u n  ţ e s u t )  s a u  .1 , - B., C2 — 0, (55) 
e s te  iz o to p  cu

/ ■■■■■' .  (57)
•V

Dacă „4, - B., — Cj - 0 sau .4., -- /4, -- C„ — 0, (55) este izotop cu

/ ■= ’ ' : ; (57')V
d a c ă  A, B 1 - -  C., 0  sa u  A., — />., - Cx, (55) e s te  iz o to p  cu

t л (57")

D ac ă  A 1A., 7X z ( )  s a u  B xB., x / -  0  s a u  CXC2 ^4 0, (55) e s te  iz o to p  cu

(Î11 acelaşi tim p este izotop cu у x fy  +  2 şi cu л 4- xjz  -f- y). Formulele 
(57), (57'), (57") şi (58) sín t conţinute în (54).

Astfel am dem onstrat teorema 4 şi to todată  am stabilit
T k o rk m a  5. Un ţesut local T  regulat este topologic echivalent cu unul 

din cele 5 ţesuturi (56), (57), (57'), (57"), (58), topologic neechivalente între 
ele. Fiecare dintre aceste ţesuturi este format din 4 fascicole de plane (dintre 
care 3 sínt fascicole de plane paralele cu planele de coordonate).
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Iya tipul (56) suportele celui de al patrulea fascicol este la infinit, 
la tipurile (57), (57'), (57") acest suport este paralel cu unul din planele 
de coordonate, iar la tipul (58) el nu este paralel cu niciunul din planele 
de coordonate.

Ţinînd seamă că dintre cele cinci tipuri de ţesu t local, numai primul 
este un ţesut global şi acesta este un ţesu t octogonal, putem  enunţa

Ткоккм л 6. Ţesuturile globale T  regulate coincid cu ţesuturile T  octo­
gonale.

Cazurile (57), (57') şi (57") corespund structurii (30) care este un caz 
particular al structurii (54).

8 . Reluăm ecuaţia funcţională
/(.v -..y)~! /,( vi -  Ф [-/>(*) 4- q(y)], (38)

considerată pe toată  axa reală, căutînd soluţiile din clase de funcţii mai 
vaste decit în punctul 5. Presupunem că funcţiile fi, q, Ф sínt strict monotone 
şi absolut continue şi Д(л') c- const.

Vom arăta că in aceste izotofie soluţia este dată de asemenea de 
formulele (47) sau funcţiile soluţiei sínt liniare.

F'ixînd pe X în (38), rezultă că / este şi ea o funcţie strict monotonă 
şi absolut continuă, iar /, este o funcţie cu variaţie m ărginită.

Să considerăm întîi cazul particular q(y) ----- ay +  b. Notînd
1 fii л X - - r(x), Ф(ах ~  b) --- ù{x), X — y — t,

f(t) -Г fi(x) у :]  +  r{x)\.
Fie Г  domeniul valorilor funcţiei r(x), cînd x  £ (—• oo, oo). Avem pentru
t Ç ( - CC , GC), /' (; Г

f(t) A / 2( 0  =- 1 П, I € ( -ce. со), t’ Ç T .
Am obţinut ecuaţia lui Pexider, a cărei soluţie, în condiţiile noastre, este 
form ată din funcţii liniare.

în  continuare presupunem că funcţia q{y) nu se reduce la o funcţie 
liniară. Arătăm  succesiv :

a) Mulţimea E k de puncte x pentru care f ^x )  ----- к este o submulţime 
(eventual vidă sau de un singur element) a unei mulţimi de puncte 
(v0 4 n 0), n . . ., 1 ,0 , 1, . . ., unde 0 nu depinde de k.

F'ie într-adevăr /,(*<,) — f^xfij. Atunci

/ ( * 0  +  У) fi(*o) - ф  A 1 b e  - i -  q{y)]
f{x! + у +  x 0 -- xx) +  /,(*,) -  ф  [£(*j) +  q{y +  x o - 4 )] ;

membrii 1 fiind egali şi Ф fiind o funcţie strict monotonă

P(x0) -  qiy) -= P(xi) +  9(У +  *0 ■ xi)-
Ţinînd seama de această egalitate se deduce că funcţia

-n .V
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verifică relaţia

Q{y +  «1 -  * o )  =  Q(y)- (59)
Q nu se reduce la o constantă, căci q nu este o funcţie liniară, deci Q este 
o funcţie periodică. Perioada ei 0 nu depinde de x 0 şi x1} ea fiind deter­
m inată de funcţia q. în tr-adevăr, notînd A  =  [p(x0) — р{хг) ] / (x0 — хг)

q(y) =  Q(y) +  Ay ;
dacă am avea în acelaşi tim p

q(y) = Qi(y) +  A&,
A ! A , a r rezulta

(A -  Аг)у + Q(y) = Qi(y)
şi Q n-ar pu tea fi o funcţie periodică. Rezultă A x — .1, Q1 == Q. Din relaţia 
(59) rezultă

x t — x 0 =  иб,

unde n  este un întreg.
b) Derivatele funcţiilor p ,  q, Ф, /, f x există şi sínt finite aproape peste

to t. Fie M lt M 2, M 3 mulţimile de puncte în care p, q respectiv Ф adm it 
derivate finite. Formulele

{ / '(*  +  у) +  K(x) =  Ф'[p(x) +  q(y)]p'(x)
\ f'{x + y) = ®  ’ÍP{x) + q(y)]q'(y) (60)

sínt valabile pentru  sistemele de valori x, у  astfel ca

ж € M 1( у € M 2, p(x) +  q(y) ç M 3. (61)

c) Funcţia  /  adm ite derivată finită în fiecare punct.
E  suficient să arătăm  că pentru  orice 2 ç ( — 0 0 , 0 0 ), există x, y  astfel

ca z =  x  -f- y şi x, y  să satisfacă condiţia (61). Să considerăm transform area
t =  ф(х) =  p(x) +  q{z — x) (62)

a m ulţim ii numerelor reale în ea însăşi. Dacă xx şi х.г au aceeaşi imagine 
prin (62)

P{x 1) +  q{z —  =  p(x2) -f q(z — X o ) ,

atunci din (38) rezultă

fiixi) =  fAxi)
şi deci în baza punctului a), | x1 — 1 > 0 .  Ide I  un interval de lungime
mai mică decît 0. Transform area (62) este biunivocă pe /  şi deoarece ф(я) 
este o funcţie absolut continuă, această transform are îndeplineşte pe I  
condiţia N  de a transform a orice mulţime de m ăsură nulă într-o m ulţime 
de m ăsură nulă. Aşadar mulţimea М гГ\1 se transform ă într-un interval 
din care se scoate o mulţime de măsură nulă, de asemenea m ulţim ea punc­
telor x, pentru  care ж ç М 1Г\1 şi 2  — x ç M 2. Deci se poate alege x 0
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astfel ca x0 £ M jfV , z — x 0 ç M 2, tn =  ф(*0) =  p(x0) +  q(z -  x n) £ M ?. 
Perechea ,r0, z — x 0 satisface condiţia (61) şi astfel am dem onstrat că funcţia 
/  admite derivată finită în orice punct.

d) Funcţiile d, Ф şi q adm it derivate finite şi diferite de zero în orice 
punct. în tr-adevăr, ecuaţia (38) se poate scrie sub forma (42), în care 
Ф  joacă rolul lui /, deci rezultatu l c) se poate aplica lui Ф. Rezultă că 
formula (602) este valabilă fără excepţie. Dacă Ф' s-ar anula în tr-un 
punct, / ' ar fi egal cu zero într-un interval, contrar ipotezei că această 
funcţie este stric t monotonă. Rezultă existenţa lui q' şi că nici / ' şi nici 
q' nu se pot anula.

e) Funcţiile / ', Ф', q' sínt punctual discontinue (pe orice interval 
aceste funcţii au puncte de continuitate), căci, fiind derivate finite peste
to t, sínt de clasa 1 Baire. Rezultă că — , şi — , sínt funcţii punctual dis-

/ '  ?'
continue.

f) Formula (602) este valabilă peste to t, iar (60j) pentru  x £ М ъ 
у oarecare. Prin  îm părţire deducem ecuaţia funcţională (40), valabilă 
pentru ж £ M j, у  oarecare, în care G şi Q sínt funcţii punctual discontinue.

g) Funcţiile G şi Q sínt continue peste to t. Fie într-adevăr y0 un 
punct de continuitate pentru  Q. Atunci toate punctele x  +  y0, unde x  £ M lt 
sínt puncte de continuitate pentru G, căci avem pentru x  fixat în M x

lim G(£) =  lim G(x +  y) =  lim [P(x)Q{y) +  В Д ]  =
y-+y« y-t-Уо

=  P{x)Q(y o) +  R{x) =  G(x +  y 0).
Aşadar aproape orice punct de pe axa reală este un punct de continuitate 
pentru G. IX ci, у г fiind un punct oarecare, putem  alege x l £ M l astfel 
ca х л +  y l să fie un punct de continuitate pentru G. Avem

G(*r +  У) =  P{xi)Q(y) +  R(xx).
Ţinînd seama că lJx{x) ÿéO, rezultă că Q este o funcţie continuă în y v 
Aşadar funcţia Q şi împreună cu ea funcţia R  sínt continue peste to t.

Dar atunci funcţiile P, Q, R, G sínt indefinit derivabile [9] şi putem  
aplica rezultatul de la punctul 5.
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PH Г NM ЯР 11 Ы H ТПРПЛРНЫН ТКАНИ
( Р с .ч ю м е )

Тернарная квазигруппа ( у , / )  (или А’ алгебра) является множеством <>. на 
котором определилась тернарная операция:

/ Т\х. V. zi tv,; ( 1 )
так, чтобы уравнения (2) имели но одному единому решению в О , для a, b, с, d, про­
извольно фиксированных в у 7 . Если имеется нейтральный элемент е 6 Q со свойс­
твом (3), (О, Т) называется тернарным пупом. Соотношение (-1) определяет изотопию 
между двумя квазигруппами. Если к является тождественным преобразованием, име­
ем г.пишую изотопию■ В работе тернарная ткань понимается множеством тернарных 
квазигрупп, изотопных, с одной данной тернарной квазигруппой.

Рядом с тернарными непрерывными квазигруппами (когда <J является дейст­
вительным интервалом и К непрерывной функцией), рассматриваются и .школьные 
тернарные квазигруппы, определённые следующим способом: nyeri, Г,. V... Г., три 
окрестности действительной оси; требуется, чтобы непрерывная функция (1) была 
определена для л fc Ej. vfc Г.,, :fc I /  и чтобы имелись окрестности С, с  1/ , ! ■_> С 1’2, 1’3С1 3,
1 1 ,v„, (д„ fc Г,. V» t  Га, 1 -:)). так, чтобы для a fc l’j, bt U . f £  Г3, d € V4)
уравнения (2) имели по одному еднпому решению в V ,, Г2, г.,. соответственно. Если 
в частности Г2 Г.,, ,v„ у ,  - г, имеется локальный тернарный луп. Если
формула (1) удовлетворена только для одной какой-либо окрестности, она определяет 
локальную изотопию- .'кжальнчя ткань является множеством локальных тернарных 
квазигру пп, локально изотопных с локальной тернарной квазигруппой.

Пусть Uh J-) тернарная квазигруппа и постоянный элемент из У- Бинарная 
операция (д , и) -» /■' (т, и, :„) определяет бинарную квазигруппу на О. названную разре­
зом л тернарной квазигруппы (У, /•). Аналогично определяются разрезы х и т.

Тернарная квазигруппа называется регулярной, если удовлетворяет обобщенному 
условию закрытия Рейдемейстери ( R.G). Это условие является инвариантным у изотопий, 
следовательно можно определит!, ткань регулярной, если одни представитель является 
регулярным, .(оказалось в 8 что, необходимое и достаточное условие для того, 
чтобы тернарный лум был регулярным, следующее: все разрезы х, у. ; должны быть 
главными изотопами, каждый с одной группой.

В данной работе показано, что. если разрезы х и у непрерывно дифференцируемого 
локального тернарного лупи, являются главными изотопами, каждый с одной группой, 
тогда операция этого лупа выражается либо формулой 128), либо формулой (64), где 
к -постоянная =£— i , и ţ> (соответственно h) строго монотонная и непрерывно дифференци­
руемая функция. Следует, что разрезы с является также главными изотопами с одной 
группой-

Формулы (28) и (54) были найдены и в работе 10 , но в допущении, что три 
системы разрезов х, у ,  г являются главными изотопами, каждый с одной группой. 
Чтобы прийти к вышеуказанному результату, решается функциональное уравнение 
(38) в классе строго монотонных и непрерывно дифференцируемых функций для/ ,  Ф,р, 
Ч и для/, =# const. Решение дано формулами (47) или составлено из линейных функций.
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Го же самое решение находится в более общих условиях абсолютной непрерывности, 
вместо дифференцируемости•

Из вышеуказанного результата вытекает ряд свойств для регулярных тканей, в 
допущении непрерывной дифференцируемости :

Для глобальной ткани условия (RG) и (О) являются эквивалентными. Ткань, 
будучи локальной, условие (О) влечёт за собой условие ( AV̂ ), но не и обратно.

Рассмотрим в эвклидовом трёхмерном пространстве 4 пучка плоскостей и огра­
ничимся областью не содержащей ни одной точки из носите,чей этих пучков.

Топологические образы этих тканей совпадают с тканями со свойством (fGi). 
Локальные регулярные ткани делятся на 5 классов топологически эквивалентных 

тканей.

T I S S U S  T K k X . U R K S  R H C r U H R S  

( К ё з U în Oi

Га quasi-gi tenia irt' \0. /•'} (on une .Y-algèbre) est un ensem ble  O pour lequel on  
a défit! i l 'opérat ion  ternaire

t i ;{ x , y .vr; (1)

tel le que les éq u ation s  (2) aient chacune une so lu t ion  unique eu O, pour a. b, r, à f ixés  
de façon quelconque en Q 7 . Si l 'é lém ent neutre , £ () avec  la propriété  (3) ex is te ,  (O, F)  
s ’appelle  loop ternaire. La relation (4) déf in it  Tisotnpic entre  les deu x  quasi-groupes.  S i  
h est  la transformation  id entique ,  nous avoirs une isotopic principale. Гп tissu ternaire est  
conçu dans notre travail  com m e l'ensem ble  des quasi-groupes ternaires iso topes  à un  
quasi-groupe ternaire donné.

A côté  des quasi-groupes ternaires con t inu s  dorsque (J est  un interva l le  réel et  F  une  
fonction continue),  on considère aussi les quasi-groupes ternaires locaux, cpii se déf in issent  
com m e s u i t :  soit Г,.  IL. V., trois vo is in ages  de l 'axe réel:  on dem ande  que la  fonction  
continue  {1) so i t  déf in ie  p o u r  v £ I v  f: Г.,. : £ I :i et qu'il ex is te  les vo is in ages  С  1 V 

У<> C IV  1 3  C IV  r 4 9 T'(.r0, :„) ( x ti £ IV y„ £' IL, T Г.,), tels (pie, pour a d  IV  h t  V 2f

c £ l 'y, d t  I 4 les équations (2) aient chacune une solution unique en Г,, Г., et I';i resp ect i ­
vem ent.  Si en particulier }\ V Г.,, д„ y0 e, nous avons un loop ternaire local.
Si la formule (4) n 'est  vérifiée que pour un voisinage, elle d éf in it  une isotopie locale.  V u  
tissu local est l 'ensem ble  des quasi-groupes ternaires locaux , localem ent isotopes a ntl 
quasi-groupe ternaire local.

S o it  ((b F\  un quasi-groupe ternaire et un é lém ent  f ixe  de O. I /o p ér a t io n  binaire  
(t. y) —* f' (x, v, 20) défin it  un quasi-groupe binaire sur (), nom m é une section de (O, /•). 
On d éf in i t  de façon analogue les se c t ion s  a et v.

T Tl quasi-groupe ternaire se n om m e régulier s ’i l s  itisf ait  à la condition de fer inclure de Reide- 
meister généralisée (RG).  Cette  con d it ion  est in var ian te  pour les iso topes  : on peut donc définir  
un t issu  co m m e  régulier si un représentant  est  régulier.

On a dém ontré  '8 que la cond ition  nécessaire e t  suffi, -ante  p< ur qu'un h < p ternaire  
soit  régulier est que toutes  les se c t ion s  .v, v. ; s dent des isotopes principaux , chacun à un  
groupe.

L'auteur dém ontre  que, si les sériions .v et v d’un groupe ternaire localt continûment diffé- 
icutiablc, sont des isotopes principaux chacun urce un groupe, alors l’opération de ce loop 
s'exprime soit par la formule (28), soit par ta formule (54), où h est une constante différente 
de 1 et cp (respectivement h) une fonction strictement monotone et continûment différentiable. 
Il résulte que les sections ' sont de meme des isotopes principaux avec un groupe.

Les formules (28) e t  (54) ont  été  trouvée* aussi  dans l 'artic le  10 . m ais dans l 'hypothèse  
que les t ro is  sy s tè m e s  de sect ions  .v, v, т sont  des iso topes  principaux  avec un groupe chacun.  
Pour obtenir  le résu ltat  ci-dessus on résout l 'éq u ation  fonc t ionnel le  (38) dans la classe des  
fonctions s tr ictem ent m onotones  e t  con t inû m en t  d i f férent iab les  p o u r / ,  Ф. p,  q et pour р \ - ф
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const .  La solution est donnée p arles  formules { i l )  ou elle est composée de fonctions linéaires.  L a  
m êm e solut ion  p eu t  être t rou vée  dans des cond itions  p lus générales, de con t inu ité  absolue,  
au  l ieu  de dérivabil ité .

D u  résu ltat  ob tenu  p lus h au t  découlent  une série de propriétés pour les t i s su s  réguliers,  
d a n s  l 'h y p o th èse  de dér ivab il i té  con t inu e  :

Potir un tissu global les conditions {RG) et (O) sont équivalentes. Le t issu  é ta n t  local,  
là  con d it ion  O entra îne  la  co n d it io n  ( I f  G), m a is  n on  inversement.

Considérons dans l'espace euclid ien  tr id im ens ionnel  4 fa isceaux  de plans e t  restreignons-  
nous à un  dom aine  qui ne con t ien t  aucun po in t  des supports de ces fa isceaux. Les images 
topologiques de ces tissus coïncident avec les tissus à propriété (RG).

Les tissus locaux réguliers se repartissent en 5 classes de tissus topologiquement équi­
valents.


