TESUTURI TERNARE REGULATE

de

¥. RADO

1. Ne propunem ¢i determindm o clasid de tesuturi, formate din patru
familii de suprafete care verifici generalizarea pentru spatiu a conditiei
de inchidere Reidemeister; apoi sd punem in evidentd citeva proprietdti
ale lor si si le clasificim din punct de vedere topologic. In cursul deter-
mindril acestei clase de tesuturt va trebui sd rezolvdm ecuatia functionald
care exprimd cd un izotop al sumel este de forma f(x 4 y) -+ f,(x). Pentru
aplicatiile avute in vedere, vom ciuta solutii continuu diferentiabile, iar
in ultima parte a lucrdrii vom extinde solutia aflatd pentru functii absolut
continue.

In lucrarea |7, am introdus notiunea de tesut spatial abstract (sau
tesut ternar) prin generalizarea proprietatilor geometrice ale unui fesut
obisnuit, format din 4 familii de suprafete (3] si am ardtat cd aceste tesuturi
sint echivalente cu clasele de izotopie ale cvasigrupurilor ternare.

Reamintim, ¢d un cwvasi-grup ternar (Q, F) (sau o N-algebrd) este o
mulfime ), pe care s-a definit operatia ternard

b Fx, v, 2) )

(notaia prescurtatd : f = vyz), inversabild in raport cu x, y si z, adicd
pentru a, b, ¢, d € Q ecuatiile

F(x,b,¢) —=d, Fla, v,¢) =d, Fla, b, 2) =d (2)
au cite o solutie unicd in Q. Dacd existd elementul neutru e € ¢, astfel ca
F(x, ¢, e) = FIle, x, ¢) = Fle, e, x) = x, {3)

(Q, F) se numeste un loop ternar.
Cvasigrupurile ternare (Q, IF) si (R, () se zic izotope, dacd existd trans-
formarile biunivoce [, g, h, & ale multimii Q pe R, astfel ca

GU(x), gv), h2)] = kIF(x, y, 2)], x, 9, 2 €0 (4)

(R, G) este un zotop al lui (Q, F), iar sistemul de transformiri f, g, 4, &
o izotopie. Dacid multimile G si F coincid si & este transformarea identica,
(Q, G) este un izotop principal al i (Q, F).
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\Tultlmca cvasigrupurilor ternare izotope cu cvasigrupul dat (Q, F)
formeazd, prin definitie, un fesut ternar. Oricare cvasigrup din aceasta
muliime este un reprezemtant al tesutului ternar. Dacd un reprezentant
este un loop ternar, ¢l se numeste un L-reprezentant. Un tesut ternar are
totdcauna L-reprezentanti [7].

Studiul fesuturilor revine la studiul proprietdtilor cvasigrupurilor,
invariante la izotopii. Pentru scopurile lucrdrii de iajd, ajunge accasti
caracterizare algebricd a fesuturilor §i nu vom insista la caracterizarea
gecmetricd, amintitd la inceput si care se gdseste in lucrarea [T].

Dacd Q este un interval al axdi reale i F o functie continud, (Q, F)
poartd numele de cvasigrup ternar real contina, iar dacd, afard de aceasta,
F admite dcrivatele partiale de ordinul m continue, (Q, FF) este un cvasigrup
leynar diferenfiabil de ordimul m. Tesuturile corcspunzdtoare reprezintd
cazurile clasice si se numesc fesutur? ternave reale continue (sau fesuturi
de suprafefe) respectiv fesuluri ternare diferentiabile de ovdinul m. (Studiul
lor clasic se gaseste in [3].)

Alaturi de cvasigrupurile ternare continue vom concidera si cvasi-
grupurile locale, care se definese in felul urmitor: fie ¥V, V,, V, trei veci-
natati ale axel reale; ¢e cere ca functia continvid (l) i fie dtfinité pentru
x eV, y eV, 2zeV, sl ca sd existe vecinititile V cV., V. Cl 2V, TV,
P4 3 F(xg, Yoo 2¢) (29 € Vi, vy € Vo, 7y € V), ﬂbtf(’l ca pentru a € L’]
beV, ceV,, deV,, ceuatiile (2) ¢4 aiba cite o solutic unicdin 1, V,
respectiv V,. Un cvasigrup local se va nota tot cu (Q, F). In conformitate
cu aceasta, avem un loop ternay local, dacd 1n particular V, =V, =V, = 1,
Xo = Yo =5, = ¢ i condifia (3) este satisficutd pentru x € V. Dacid
f, g, h, k din (4) sint transformdri topologice si (4) este verificat pentru
orice x € Vi, ¥y €V, 2 €V, avem o wzotopie locald. Un fesut local se defi-
neste ca mulfimea cvasigrupurilor ternare lecale, local izotope cu un
cvasigrup ternar local.

Definitiile date pird aici, sint generalizdri directe din teoria cvasi-
grupurilor binare (obisnuite) [21, [57, [6], in care in locul operatiei (1)
avem o operatie binard. Un cvasigrup binar se zice regulat, dacid este izotop
ct un grup, un fesut birar cste regulat, daca printre rtpruentan;ii lui e
afld un grup. Conditia de inchidere a Jui Reidemeister

)

YV = )y
XYy = ¥yl = Xale = Y, (R)
1Yo = V4

este necesard si suficientd pentru ca cvasigrupul binar (Q, F) cu operatia
F(x, y) = xy, sd fie rcgulat. Conditia (R) este invariantd la izotopii.

In conformitate cu o teorcmi celebri a lui L. L. J. Brouwer,
orice grup continuu, definit pe un interval real, c¢ste izomorf cu grupul
aditiv al numerelor reale [4]. Rczultd, ci orice cvasigrup real continuu
regulat are o operatie de forma

xy = h7H[(x) 4 ¢) ], (

Ui
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unde /, g, & transformd biunivoc si continuu (adicd topologic) intervalul
Q pe axa reald. Teorema Jui Brouwer poate fi extinsd pentru grupuri
locale, definite pe un interval real (a se vedea ecuatia functionald a asocia-
tivitdgii in [17); deci orice cvasigrup local regulat are de asemenea o operatie
de forma (5). De aici se deduce usor ¢ tesuturile obisnuite regulate coincid
cu imaginile topologice ale fesutului format din trei fascicole de drepte
paralele. Asadar pe aceastid cale se obtfine in mod simplu rezultatul clasic
al lui Reidemeister.

Iie (Q, F) un cvasigrup ternar $i 2, un dement fix din Q. Operatia
binard (v, v) — F(x, v, 2,) defineste un cvasigrup binar pe , numit o
sectiune < a cvasigrupului ternar (0. F). Analog putem defini sectiunile
x sl sectiunile v,

In teoria clasicd, un fesut de suprafata se zice regulat, dacid cste ima-
ginea topologicd a patru fascicole de plane; accastd definijie revine la
taptul ca operatia unui reprezentant oarecare cste de forma

sys — R + gl + B, ®)

unde f, g, b, & sint functii strict monotone si continue. Condifia necesari
si suficientd pentru ca un tfesut de suprafatd <a fie regulat este

Ko%= Xp¥edy == Y% > VyVoldp = Yol 7 p)edy (0)

(conditia octaedrelor). Aceste tesuturi se mai numesc si fesuturi octaedrale.
Noi vom folosi aceastd terminologie, termenul de regularitate fiind pastrat
pentru o notiune mai largd. In lucrarca 7] am studiat regularititi de
diferite tipuri (regularitate 1, 2, 3 ¢i regularitate tare), iar in conformitate
cu lucrarca {8} un evasigrup ternar se zice regulat, daca satisface urmatoarea
condifie de inchidere, numitd conditia lui Reidemeister generalizata :

Y151 = XgVa%y

KoV i8q = XgVal. .
2151 4Y3%3 = W9VaTp = ¥y Vefa (RG)
NV T, == . | 2yee2 4Y4°4

YiVely = X3)aly

YiViRe = X3V3dy J

Se vede ci aceastd condifie este invariantd la izotopii, deci putem defimi
tesutul ternar ca regulat, dacd un reprezentant al siu este regulat. S-a
demonstrat fn [8] ci fiecare din urmitoarele conditii este necesard si sufi-
cientd pentru regularitatea unui fesut ternar:

a) Toate sectiunile x ale unui reprezentant sint izotopi principali
al unui gi acelutasi grup, la fel sectiunile y si z (cele trei grupuri putind
fi diferite).

&) Un L-reprezentant verificd implicatia

abe = ¢ = xyz = (xbc)(aye)(abz), a, b, x, ¥, 2 € Q.

{Cind utilizdm condifia a) ca suficientd ajunge sd o cerem pentru un
singur reprezentant, asa cum s-a enuniat, iar cind ea apare ca o conditie
necesard, putem s-o aplicim pentru fiecare reprezentant. O observatie
analogd e valabili pentru IL-reprezentantii din conditia b).)
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In lucrarea {10 s-a mai dat o a treia conditie necesard si suficienti :

¢) Operatia ternard a unui I,-reprezentant se poate scrie in trei moduri
cu ajutorul unor operatii de grup xvoy, xv= v, ¥ vy (x° 1% 1V noteazi
elementele inverse ale lui x fu cele 3 grupuri, definite pe aceeasi multime
ca si I-reprezentantul) :

2)=@oz) vaVy(y=z. (1)

In lucrarea [10 s-a studiat mai amdnuntit cazul particular al fesu-
turilor regulate continuu  difercntiabile de  ordinul intii. Tn acest caz
T-reprezentantii sint de forma

v = (A vy)ovio(vaz) = (YY)«

VI o !

(= vy = »(3)], (8)

-3

unde o este o functic strict monotond, care admite derivatd continud.
Un loop ternar cu operatia (8) este un grup ternar. Iu aceeasi lucrare s-a
ardtat cd tesuturile locale regulate, coutinuu diferentiabile de ordinul
intli, au operatia I,-reprezentantilor de forma

alxl I

iy - /e‘if‘———

olxi -+ &
S 9
Xy 2 ; (?(x) o1 s ( )

unde o are semmnificatia de mal sus, lar & este o constanta diferita de - 1.
Invers, pontru orice astfel de ¢ si &, formulele (8) si (9) definesc cvasi-
grupuri ternare (locale) regulate. Acest rezultat s-a obtinut prin rezolvarea
sistemului de ecuatii functionale (7), functiile nccunoscute fiind o, « $i .

In Tucrarca de fatd vom arita ca fesuturile locale, continuu diferen-
tiabile de ordinul intii au acecasi structurd (8) i (9) in conditii mai largi
decit regularitatea. $i anume vem admite cd Sectiunile x i y ale unui I.-
reprezentant sint izotopi principali cu cite un grup. Va rczulta ca o conse-
cinfd cd secpiunile & sint si cle izotopi principali cu un grup.

Pentru a ajunge la acest rezultat vom rezolva pe parcurs ecuatia
functionald

(x4 9) 4 R = © [p(x) + gy . (10)

provenitd din primii termeni ai relatiei (7), unde © $i » sint operafii de
grup, iar y o operatic de loop. Cele cinet functii din ecuatia (10) sint functii
necunoscute, presupuse continuu diferentiabile ¢i strict monotone (cu
exceptia lui fy). Ecuatia (10) fiind interesantd si in sine, vom da in ultima
parte a lucrdrii solutia ei in ipotcza de continuitate absolutd. Solufia
astfel «xtingd nu o vom aplica la teoria tesuturilor din urmitoarele motive :
1. s-ar obfine o clasa de tesuturi, care se situeaza intre cele continue si cele
diferentiabile, greu de precizat si fira interes dcosebit, 2. generalizrea
facutd o consideram provizorie, cici avem impresia ¢i solutia obfinuti
se extinde la cazul continuu.
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Din structurile (8) si (9} ale tesuturilor regulate (globale respectiv
locale) decurg, in ipoteza de derivabilitate continud, o serie de proprietdti:

Pentru un tesut global conditiile (RG) g1 (O) sint echivalente. Tesutul
fiind local, conditia (O) atrage (RG), dar invers nu.

Sa consideram in spatiul euclidian tridimensional 4 fascicole de plane
s s34 ne restringem la un domeniu care nu contine niciun puict din supor-
turile acestor fascicole. Imaginile topologice ale acestor tesuturi coincid
cu tesuturile cu proprietatea (RG).

Toate tesuturile octogonale sint topologic echivalente. Tesuturile
locale regulate se fmpart in 3 clase de tesuturi topologic echivalente.

2. Fie (@, F) un I-reprezentant al unui tesut ternar. Notdm pre-
scurtat

s Iy, v, o2y s aye, (ny

si fie ¢ elementul neutru. Presupunem cd are loc urmitoarca proprietate

Toate secliunile v sind izotopi principali ol unul st aceluiast } (I)\
: i

arup, de asemenea sectivnile v,

Proprictatea /2 nu depinde de T-reprezentantul ales, decel apargine tesutului,

Avem
I P ‘ .;.' 53
Xy ‘J(,} ( , 2) (12)
= g y) oy 2
unde = gt 0 noteazd cele doud operq;ii de grup, o(x, y), w(v, z) lunctil

inversabile de v respectiv z, cind x este fixat, iar o,(x, ¥), $y(v, 2) functii
mmversabile de x respectiv =, cind y este fixat. Putem admite ¢d elementul
neutru al grupului (Q, ) este ¢, cdci dacd acest element neutru ar fi
e e, n-avem decit sd trecem la un grup izomorf prin transformarea
Ty =xx ¢l x Q. La fel admitemn c¢d grupul (Q, o) are c¢lementul
neutru e.
Ardtim intii

eVT s Vs I, A¢L e X O - (13)
Din (12}) se¢ obtine

1= eez = ogle, €)= ule, 7)

y o= eye —gle, v) « die o),

de unde

ple, ¥) = yx ple o Gle 2] =g, )z

(¥* noteaza elementul invers al lui x in grupul (Q, »), iar x° in grupul
(@, 0); deci (12;) devine pentru v == ¢

evz = vu Yle, e)¥ s oe, e)% s o

Inlocuind aici y — ¢, z =e¢, se determini (e, ¢)%: (e, €)* = e; asadar
prima formuld (13) este stabilitd ; le fel se obtine formula a doua.
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inlocuim in (12,) ¥ = e si tinem seama de (13)
xoz = p(x, e * Y(a,z),
deci
w(x, 2) = ox, )*x (x02)

xyz = ¢(x, ¥) = o(x, €)"x (x02). (14)
Relatia (14) devine pentrau 2 = ¢
o(x, ¥) = o(x, €)%« x = xye. (15)
Notdm operatia binari
e = x vy, (16)
care defineste un loop pe (. Din (14), (15) si (16) sc obtine
xyz = (X §Y) «x%x (x02). (17
In mod analog obtinem
%Yz = (£ 7 ) 0¥°0 (y+2). (18)

Reciproc, dacd un loop ternar (Q, F) admite descompunerile (17)
si (18), sectiunile x si v sint izotopi principali ai grupurilor (Q, «) si (Q, o),
deci {Q, F) admite proprietatea P. Astfel am demonstrat

Lrema 1. Condifia necesard si suficientd pentru ca un loop ternar (Q, F)
sd atbd proprietatea P, constd in existenta simultand a descompuneriloy (17)
st (18) cu doud operafii de grup =, 0 st o operatie de loop .

Pentra a cunoaste mulfimea loop-urilor ternare cu proprietatea P
va trebui deci sd determindm operatiile de grup * si © si operatia de
loop binar v, astfel ca sd verifice ecuatia functionald

(xyy)sxfs(voz) = (xyy)oy®o(yx2) (19)
pentru 1, ¥, 2 € Q.
S4 considerdm, pentru un moment, cazul particular
XYYy = X0y (20)
Ecuatia (19) devine
X0 (yx2) = (xoy)+x"x (x02)
sau
X¥u [xo(yx2)] = ¥%x (x0y) « 2% 4 (v 02).
Tolosind notatia
T.(y) = x%x (x 0y}, (21)
ecuatia functionald devine

To(yxz2) = Tuy)« Tiz),
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deci T, este un auntomorfism al grupului (Q, +). Tinind seama de formula
(21), avem

xo0y = v« Tiy) (22)
si putem enunta

LyrMA 2. Dacd grupurile (Q,«) st (Q, o) sint legate cu velatiile (19)
st (20), atunci operatia de grup o sc deduce din operafia de grup « prin
intermediul  formuler (22). unde T este un automorfism al grupului (Q, =),
care depinde de x.

3. S4 particularizim mulfimea @ la un interval "al axei reale, iar
(0, F) la un loop ternar continuu. Pentru a plasa insd acest studiu intr-un
cadru mai general, nu vom mai presupune ca (Q, F) este un loop global,
ci unul local.

Observam intii ci demonstratiile celor doud leme stabilite sint vala-
bile si pentru un loop ternar local. In definitia proprietdtii P urmeazi
si considerim sectiunile x s1 ¥ pentru x respectiv y luati arbitrar dintr-o
vecindtate a elementului e. Sint valabile deci urmitoarcle leme :

Lema V. Conditia necesard si suficientd pentru ca un loop ternar
local (Q, F) sd aibd proprietatea P, constd in existenta simultand a descom-
punertlor (17) st (I8) cu doud opcratii de grup binar local« si o si 0
operatie de loop binar local .

Luma 20 Dacd grupurile locale (Q, ) si (Q, o) sint legate cu relaliile
(19) si (20), presupuse valabile pentru o vecindtate a elementului neutru atunce
operatia o se deduce din operatia « prin  intermediul formulei (22), unde
T, este un automorfism local al grupului local (Q, %), care depinde de x.

Fie (Q, F) un loop ternar local cu proprietatea P. Putem aplica lema 17,
iar pentru cele doud operatii o §i » avem

roy =g g(x) + g(y)] %
xxy = A [A(x) + Aly)], =

% si y fiind arbitrare intr-o vecindtate V a elementului ¢. Functiile f si g
il transformi topologic pe V iutr-o vecinitate a lui 0. Avem

gle) =0, hiey =0 (24)

si
g(x°%) = —g(x), h(x") = — h(x).

Tinind scama ci

g(x,0 x50 xg) = g(x;) — glxy) + g(xy)
h(xy s 0 % 2g) = h(x;) — h(xg) + h(xy),

ecuatia functionald (19) devine

gle v y)—g) +gh ™ [h(y) 4 h(z))) = h k(v yy)—h(x)+-h{x02)}. (25)
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Deosebim douda cazuri :
a) glavy) - gly) nu depinde de y, oricare ar fi x € V.
Avem
glvy) = gly) = w(v)
inlocuind y == ¢, deducem $(x) == g(xye) — gle) == g(x), decd
yy =g L) Fgly)) = xoy
Din lema 2’ obtinem
Yoy = v Ly),
unde 1, == F este un automorfism local al grupului local (¢, =), adica
Flysz) = I'y)=T(z), v zeV
sau

Th\[h) 4+ b)) = b T + AT ).

Seritnd A{y) = u, h{z) == v, n si v sint numere reale oarecare, suficient
de mici si
ATh Y -+ w) = hTh Yu) -+ hiTh ().
Deci
AThYu) = C{x) - w
Iz Tuly) = h=HC(x) - hly)] (26)
xoy = h th(x)+ Clx)- h(y)]
Dar xoy = youx, dea
h(x) -+ C)aly) = My) + CAX)
punind aici y = v, obtinem
C{x) == ah(x) + 1, (27)

unde constanta a = C(y,} - 1.
Dacad a = 0, obtinem C(x) == 1, Yoy = vxvy = xgy si

Flx, v, 2) =x0oyoz = I h(x)+ hiy) + h(z)], (28)
deci i acest caz (Q, F) este un grup tevnar.
Dacd a 20, formula (26) devine
x oy = hah(h{v) + h(x) + A(v)],
iar operafia loop-ului ternar local (Q, F)

F(x,y,2) = x0(y=2) =hY{a h(x)[h(y) + k(z)] + B0)+h(y) + H(2)}.
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Putem  scrie
BE(x v, <) = ta- b L h(y) = h) - ()
sdau
@ RF(x v, ) + 1= lah(x) o 1 hy) = 1 s Tak()= 1] 1),

Notind
w(x) =a- h(x) =1, (29)

g este o transformare topologicd a unei vecinatdti a lui ¢ in axa reald, ca
si 1, s1 avem
wle) = ahle) 4+ 1 =1

Fla,y,2) = 57" (gl aly) — o(3) - 1)

Rezumind acest caz a), enunjdm

Luya 3. Un loop ternar local (Q, F), care admite descompunerile (17)
st (18) cu irei operatii de grup local », o, v, dintre care ultimele doud
cotncid, are o structurd determinatd de formulele (28) sau (30), unde h res-
pectiv o sint functii continue st strict monotone. Reciproca este evident ade-
vdratd.

Formula (28) atunci s numai atunci este valabild, dacd cele trei ope-
rafitx, O, y coincid.

Loop-ul ternar local cu structura (28) poate fi considerat cu restrin-
gerea unui loop ternar global. Dimpotrivd, un loop térnar local cu struc-
tura (30) nu poate fi extins la un loop ternar global. Intr-adevir, se vede
din (30), ca dacd ¢(x) > 1, oF(x, x, x) > [@(x) ? si astfel In cazul loop-ului
ternal global definit de (30), o(x) trebuie si ia valori oricit de mari, de

si
’ (30)

~~

L .. v 1
asemeneca valori oricit de mici. Tar, dacd ¢(yo) = 9(z,) = — F(x, ¥,, 2g)

ia aceeasi valoare ¢ 1(0), oricare ar fi », ccea ce¢ e In contradictie cu con-
ditia (2). Deci are loc

Lina 4. Un loop ternar global continuu (Q, F), care admite descom-
punerile (17) si (18) cu frei operatii de grup =, o, v, dintre care ultimele
doud coincid, are o structurd delerminatd de formula (28), dect este un grup
ternar st toate cele trei operatii =, o, v corncid. .

b) Existd x, € V astfel ca "( v, Uy — g(v) 3£ const.  Inlocuim iu
relatia (25) x = x,

g vy - g+ gh  h(y) + hz)) = ghTt {h(xg vy) — h(xy) +
4 h(x,02)}. (31)
Notam
[ gh? (32)
h(y) = u, hiz) = v,

u si v sint valori arbitrare dintr-o vecindtate suficient de micd a originii.
Ecuatia (31) devine

fur -+ o) + () = fipl) = q(e)], (33)
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unde s-a notat

f1(u) = g[xovh™(u)] — gh™(u) 7= const.
plu) = hlxgvhu), q(v) = h[xo0h 7 (v)] — h(x,).

LwuyMa 5. Un loop ternar local cu proprietatea ¥ ave saw structura (28)
sau (30) sau se bucurd de proprielatea urmdtoare : operatia lui poate fi scrisd
sub formele (17) st (18) cu grupurile locale o st « furnizate de (23), iar
functia |, definitd prin (32), satisface, pentri w si v suficient de wmiei in
valoare absolutd, ecuatia functionald (33), unde f, p, q sint functii comtinue
st strict monotone st fy o functie continud, care nu se veduce la o constantd.

4. Vom rezolva in punctul 5. ecuafia funcfionald (33) in condifii mai
restrictive : vom cduta functiile necunoscute f, p, ¢, f, in clasa functiilor
care admit derivatd continud. Pentru a putea apoi aplica aceastd solutie
la loop-urile ternare locale diferentiabile, vom avea nevoie de

Luya 6. Fie

glroy) = glv) + ¢(y) (34)
$i sd presupunem cd functia g este continud si strict monotond pe intervalul I,
valorile lui g il contin pe O st functia G(x, y) = x oy admile derivata par-
tiald Gi(x, y) continud pentru x € I, y € 1. Atunci existd o vecindtate a
lui ¢ = g=Y0), confinutd in I, pe care g admile o derivatd continud,
Demonstratic Avem

G(y,e) = x0e == x
G, (x,¢) =1,

deci existd o vecindtate a lui ¢ V, C I, astfel ca

Gi(x,v) >0, dacd x,y €V,
Formula
giG(x vy Gilx,y) =g (%) (35)

este valabild dacd x, ¥y € 1, si ¢'{x) existd. Ori g'(x) existd in punctele
lui V,, dacd facem abstractie de o mulfime de puncte de misurd nuld.
Tinind seamd cd G(x, ¥) este un grup local, existd V,CV, astfel ca pentru
a €V, ¢ eV, ecuatia

Gla,y) = ¢ (36)

are o solutie y in V,. Fie acum a € V', astfel ca g'(a) si existe, ¢ element
oarccare In V, si y, solufia ecunatici (36). Pentru x = a, y =y,, relatia
(35) devine

g'c) - Gila, yo) = ¢'(a), (37)

de unde rezulti cd g'(c) existd pentru ¢ € V,. Pastrind pe a fix in (37)
si facind pe y, si ¢ <4 varieze, astfel ca sd avem mereu G(a, ¥,) = ¢, se
deduce din continuitatea functiilor G si G ca g’ este o functie continud
in V,.
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CoNSECINTA. Dacd (Q, F) este un loop ternar local, continuu diferen-
frabil, atunci funchra f, datd de formula (32) admile o derivatd continud
in vecindtatea originii.

5. Vom rezolva acum ecuatia functionald
I + ) + hix) = @) + 9], ¥ €l (38)

care contine ecuatia (33), ca un caz particular. In ecuatia (38) figureazi
cinci funcfii necunoscute. Am trecut de la ecuatia (33) la (38), pentruci
aceastd din urmd prezintd interes si in sine, membrul al doilea fiind un
izotop oarecare al sumei si astfel prin ecuatia (38) se determind izotopii
sumei de forma fx + y) + fi(x).

Ciutam solutia (f, ®, p, ¢, f) astfel ca primele patru functii si fie
strict monotone si cu prima derivatd continud in intervalul 7, care confine
originea, iar a cincea functie f, (a cirel derivabilitate continui rezultd
imediat) s& nu fie o constantd. Prin aceastd ipoteza ultimi excludem solutia
triviald f, = const, f oarecare, ® =f, p(x) = ¢(x) = x. Se presupune
de ascmenca cd domeniul de definitie al functiei ® congine  valorile
p(x) +90), x y €l

Derivind ecuatia (38) in raport cu x si ¥ obtinem

Fx =) — filx) = @ Tp(x) 4+ g(y)]p/(%) ,
v+ = Q'[p(x) + q()1g'(y). (39)
Functiile /i ¢' nu se anuleazd in 1. Intr-adevdr, daci am avea y, € I,
g (¥y) =0, atunct f'(x -+ y,) == 0 pentru orice x ¢ I, in contradictie cu
monotonia strictd a functiei f(x). Din f'(¢c) = 0 rezultd &' [p(x) +¢(c — x)]=0,
ceea ce fnseamnd cd @' se anuleazd pe un interval, adicd o contradictie.
Prin fmpértire obtinem din (39)

R Y (5 N W
fx = fl (v) g'(v) Fn)
sau notind G — 1/f', P = p'jfi, @ = 1/¢’, R = — 1/},
| Gl + y) - PHIOW) + R, "0

unde G gi Q sint functii continue pe I, P si R functii continue pe un
interval I’ C 1. In aceste conditii functiile P, O, R, & sint indefinit deri-
vabile {9°. Obtinem, prin derivare in raport cu v, ccuatia functionald
7 . | N . - ’ R
G'(x 4 v) — P(x) Q')
siose cunoaste ed solutia generald a acesteia este
('(x) = ayc),
unde a; i ¢ >0 sint constante. Deci
G(x) = axc, + by,

1
’ -3 e l -
/(\) T (I«_,l';” - bx
flx) = kln {ac* -+ b) (41)
(ay, by, a2 0, b, kz=0 si ¢ >0 sint constante).

44— Babes--Bolvai: Matematica-Fizica 11964
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Asadar, o functie f, care verificd eccuafia functionald (38) impreuni
cu patru functii din clasa de functii specificatd, este de forma (41). Pentru
aplicatiile in teoria tesuturilor ne ajunge functia f(x). Dar ecuatia (38)
este interesantd si independent de accastd aplicatie, precum am observat,
de aceea trecem acuvm la determinarea celorlalte patru functii necunoscute.

Scriind p(x) = u, ¢q(y) = v ecuatia (38) devine

O + ) — fip™ ) = [Ip7700) + g7 Hv)

care are exact aceeagi structurd ca si ecuatia (38), iar conditiile impuse
pentru p si ¢ atrag aceleasi conditii pentru p71 si ¢~ Rolul lui / fiind
preluat de @, avem

DO(x) == k" 1n (a'c’* + b, (42)

unde a' 3£ 0, B 3£ 0, ¢’ > 0 sint constante. Cele 8 constante, care figureazid
in expresiile (41) si (42) nu sint independente. Notind

b= R, ¢ = b gp(x) — pi3), Bal) — ), folr) —e® (43)

si inlocuind expresiile (41) si (42) in ecuatia (38), obginem

[(@c™” + b)fo()]* = a’c"™ " oy, (44)
Fcuatia (44) furnizeaza pentru x =0
@’ - f(a® LB+ B

astfel (44) devine
(a4 D))" = Al + )+ B 4 b
Considerdam aceeasi ccuatie pentru y = 0 si le fupiartim

tac* Y - b)* i Aad - b 4 BBy

{ac® + b)* Ala b)Y + Bich®
dupa un calcul simplu rezultd a

+3y N3 X ¥4

(ac® b D) (ac” by .
A ~e = functie de v
(@ac? 4 DY (a0

Notind 4(x) = (ac* 4+ b)*, avem

!

v +y) = 20 190) — (O] + $(v).
Aceasta ecuatie este de tipul ccuafiei (40), deci

Ylx) = Ad,v" = By = (ac” 4 0)°;

¥

rezultd (dupd derivare)
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Relatia {44) se scric
(ac'™ " 0 by ae™ Y (45)
inlocuind v = 0, obfinem
ey, (46)
Ul

unde @, si by sint constante. Dacd by == 0, rezultd usor ¢i toate functiile
necunoscute sint liniare. S& presupunem acum c¢d b 2 0. Scadem din
(45) acceasi ecuatie pentru v == 0; tinind seama de (46) i simplificind
s¢ obtine

. a’ pi v
"2('\,) L (.fni‘) v :
oy
ceunatia (45) devine
y w’'h e ,
R e, ¢ a'b,.
a b’

Asadar

| flx) = kIn (ac’ + b)
Ox) - kln (@' + )

. 1 a’b -
Vo —log |2 ¢ a'h
p( P (,,l,,, Y (47)
g(x) : log ( ot blbl)
CR a4y
b ¥
f1(x) kom0t

Se constata prin inlocuire ca fuuctiile (47) verificd ccuatia functio-
nala (38).

TroruMma 1. Solutia generald a ecuatiel funciionale (E8) in clasa func-
{itlor strict monotone si continuu diferentiabile pentru [, O, p, q st pentru
Iy Fconst., este dald de formulele (47), wunde a0, a 20, a; Z0,
b, 0" 520, b, k, 8520 si ¢ >0 siul constante arbitrare sau toate functiile
solutier sint liniare.

Solutia generald a ccuatiei (33) se obtine din solugia (47) a ecuatiei
(38) punind a’ == a, b" = b, B = 1.

6. l'ie iardsi (Q, F) un loop ternar local, continuu diferentiabil, cu
proprictatea P. S& presupuncm (i structura lui nu se exprimd cu for-
mulele (28) si (30), adicd ne plasam in cazul b) al punctului 3. In confor-
mitate cu lema 5., operatia acestui loop admite descompunerile (17)si
(18), unde operatiile © 31 « sint date de (23), iar functia (32) f = gh™?
are forma (41) (s-a tinut scama de consccinta lemei 6 si teorema 1).

Acuma sintem 1 mésurd de a determina operatiile binare o, & si
Vv st apoi operatia ternard F(x, v, z).
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S4 notdm

p() = M (48)
atunci p(e) = c*@ =1 si (23,) devine
Yy = o7 o(x) - o). (49)

Mai departe,
g(%) = fh(x) = kln (ac*® + b) = kIn lag(x) 4+ b];
punem conditia g(e) = 0, ceea ce conduce la
b=1-—a.
Operatia o se exprima dupd formula (23;) in felul urmator:
Rlufag(voy) + 1 —a]=rFkin [ag(x) +1—a + kln [ao(y) + 1—a]
oy = o Hap(¥)e(y) + (1 — a)[o(x) + () — 1]} (50)
Inlocuim expresiile (49) ¢i (30) ale operatiilor « i o in ecuatia (19)

“‘?“’,‘729&“",? olz) -+ (1 - a) jalx Vv) — cp’(,\j) Lol o)
aplyvy — 1 — a

aley vifeplyy oo (1~ a) o) = gl o 1} (51)

@lx)

Aceastii relatie determind operagia v

() @ (11 -
ryy = @—] — CP‘)C?(‘ A (02)
ap(y) ely) — aply) — ag(y) 1 o -1
Formula (52} poate fi pusd sub forma
1 7;,(,1_,_ e n= _}.,_._”A 4+ a [ ¢ - a
oly 7 v) Gl o1
sau punind
1
w{x) = exp Ly ‘
alx)
avem
(v v = ) = ), (53)

deci (Q, v) este local izomorf cu grupul aditiv al nuwmerelor reale.
Formula (17), sau cei doi membri ai egalititii (§1), furnizeazd expresia
ap(X) ols) + (1 — «) gly) - olz) — 1]
ag(x) oly) — agly) ~ wa(v) — a — 1

ol'(v, y,2) = — 2l

sau notind (I — a)ja = £

o)+ k )9;’ ) 1
Ty v 7)) e gl : ox) -k -
Iﬁ(«\u ,\) N) - ’{ 1 (P(ﬂ = . (04)
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TEOREMA 2. Un loop ternar local (Q, F) continuu diferentiabil, cu pro-
prietatea P arve sau structura (28) sau (54), unde k este o constantd diferitd
de — 1 si o (respectiv k) o functie strict monotond si continuu diferentiabild,
care transformd o vecindlate a lui ¢ intr-o vecindtate a axei reale, care confine
punctul unitate (rvespectiv originea). :

Trebuie si ardtim numai ci structura (30) este conginutd in (54),
ca un caz particular.

Si observam intii ca in formula (54) variabilele x, y, 2 au un rol
simetric [10]. Intr-adevar, scriind

1 1

o(x) = i k= —
(%) o S Y
obtinem
@ {x) — 1
P+ Vo) 1 Ay
Fx,y,2) = 7! I q;l(x) 1 (54')

?1(*‘) (Pl(x) + ky

si scriind

ky
p1(%) = (ky + Dgo(x) — by 1 By = — ——
By + 1
obtinem
Flx, y,2) = 57! (54")
Valorile £ = 0, —1, oc se transformd ink, = o, —~1,0 si &k, = —1, o0, 0.
Valoarea & = — 1 este exceptionald, ea corespunde la a = o si formula

(54) nu dia un loop ternar. Dar £ =0 sau o pot fi considerate.
Punind in formula (54) si in cele deduse prin schimbarea rolurilor
variabilelor # = 0 sau oo, se objin structurile analoage cu (30).
Din teorema 2 deducem imediat

TroreMa 3. Dacd sectiunile v sy ale unui loop ternar local, continun
diferentiabil, sint local izotope cu cite un grup, atunci si secfiunile z au
aceastd proprietate.

7. In acest punct vom aplica teorema 2 la teoria tesuturilor locale,
continuu diferentiabile, pe care le vom numi fesuturi T. Tesuturile T
sint formate din patru familii de suprafete, continuu diferentiabile, asezate
intr-un domeniu D al spatiului euclidian tridimensional. Dacd domeniul
D cuprinde intregul spatiu, avem un fesut global T, in caz contrar un
tesut local T.

Dupa cum am ardtat in punctul 1, un tesut 7 este octogonal, daci
verifici conditia (O); el este regulat, dacd verificd conditia (RG). Tesuturile
T octogonale sint topologic echivalente cu un tesut format din 4 fascicole
de plane paralele.
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I-reprezentatil tesuturilor locale 7' regulate au proprictatea P, deci
li se pot aplica teorema 2, asadar au operatia de forma (28) sau (54).
Rezultd

Troreysa 4. Un fesut local T regulat are un representant de forma
(55)

Ay + By + Ciz 4+ Dy

t — ,
Apx 4 Byy 4 Coz 4+ D,

unde A, B;, C;, Dy, [ == 1,2 sint constante. Invers, ovice tesut local definit
prin formula (38) este un fesut local T regulat.

Intr-adevdr, dacid formula (28) este valabild, aplicdm izomorfismul
h(x) — x si obtinem formula (85) cu 4, = I, — C, -~ Dy =1 ¢i D, ==

= A, .B._, = Cy = 0. Dacd formula (34) ¢ste valabild, aplicdm izotopia
olx) - 1 1
e O T
o) & K o] >y (2} — o) —

si se obtine o expresic de forma (55).
Reciproc, dacd se dd (85) ¢i A, = B, = C, =0, (35} este izotop cu

P x4y -+ oz (56)

care este tocmai (28) cu /z(.t’) Y

Daci A, = B, = C, =0 (atunct in mod necesar A, 3.0, B,70,
C, 0, céci altfel (51) 11 -ar defini un tesut) sau 4, = B, = Gy = 0, (35)
este izotop cu

(37)

Dacd A, == By =Cy =0 san 4, = B, == C, =0, (55) este izotop cu

—
Jt
-1
-

t- i
V‘v

dacd A, « B, = C, =0 sau 4, —= B, = C,, (33) este izotop cu
f— ,1’” B (57”)
Dacd A4, 70 sau BB, 7 0 sau C,C, 52 0, (85) cste izotop cu

fo 20 (38)

(in acelasi timp este izotop cu y + x/y + z si cu 2 + x/z + ¥). Formulele
(57), (57), (57”) si (58) siut conginute in (54).
Astfel am demonstrat teorema 4 si totodatd am stabilit

TrOREMA 5. Un fesut local T regulat este topologic echivalent cu unul
din cele 5 tesuturi (56), (57), (87'), (37"), (38), topologic neechivalente intre
ele. Fiecare dintre aceste tesuturi este format din 4 fascicole de plane (dintre
care 3 sint fascicole de plane paralele cu planele de coordonate).
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Ia tipul (56) suportele celui de al patrulea fascicol este la infinit,
la tipurile (37), (37"), (87") acest suport este paralel cu unul din planele
de coordonate, iar la tipul (58) el nu este paralel cu nictunul din planele
de coordonate.

Tinind seamd cid dintre cele cinei tipuri de tesut local, numai primul
este un fesut global si acesta este un fesut octogonal, putem enunta

TroreMy 8. Tesuturile globale T regulate coimcid cu fesuturile T octo-
gonale.

Cazurile (537}, (5377} si (37") corespund structurii (30) care este un caz
particular al structurii (54).

8. Reludm cenatia functionald

flo ) 4 A = @iplx) + g(y) ], (38)
consideratd pe toatd axa reald, ciutind solutiile din clase de functii mai

vaste decit In punctul 5. Presupunem cd functiile p, ¢, @ sint strict monotone
si absolut continue si fy(x) 2= const.

Vom ardta cd& in  aceste zotopc solutia  este datd de asemenea de
formadele (A7) sau functiile solutiel sint liniare.

Fixind pe v 1n (38}, rezultd cd / este si ea o functie strict monotona
si absolut continud, iar f, este o functie cu variatie marginita.
Si considerdm  intli  cazul particular  ¢(y) = ay + b. Notind

plx) o x = (), Dlax -+ D) = ylx), ¥+ =1,
1) -+ hx) = v+ )]

Yie I’ domeniul valorilor functiei r(x), ¢ind x € (-0, o). Avem pentru
t e (o, ), t' el

f6) 4 Jolt') = U+ 1), L € (—au, ), 1" €I,
Am obtinut ccuatia lui Pexider, a cdrel solutie, in conditiile noastre, este
formata din functii liniare.

In continuare presupunem i functia g(y) nu se reduce la o Junctie
liniard. Ardtam succesiv :

a) Multimea E, de puncte x pentru care f,(x) = k este o submulfime
(eventual vidd sau de un singur element) a unei mulfimi de puncte
{xg+nb} n= ..., -101, ..., unde 6 nu depinde de¢ A.

Tie intr-adevar f,(x,) = f1(x,). Atunci

fxg -+ y) 4 filxg) = ®p(xy) 4 ¢)]
f(xy + ¥ 4 % — %) + () = ®p(xy) + ¢y + x — 4) 15

membril 1 fiind egali si @ fiind o functie strict monotoni

plxg) - qly) = plx) + qly + x5 — x)).

Tinind seamd de accastd egalitate se deduce cid functia

!

o

00 gy - Pl = pla)

Yo My
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verificd relatia
QY + %1 — %) = Q). (59)

Q nu se reduce la o constantd, cdci ¢ nu este o functie liniard, deci Q este
o funcfie periodicd. Perioada ei 6 nu depinde de x, si x,, ea fiind deter-
minatd de functia ¢. Intr-adevir, notind A={[p(x,) — p(x)]1/(x, — *,)

9(y) = QW) + 4y ;
dacd am avea in acelasi timp

9(y) = Q1(y) + 4yy,
A, 5% A, ar rezulta

(4 — 4dy)y + Q) = ()
si Q n-ar putea fi o functie periodicd. Rezultd 4, = 4, Q;, = Q. Din relatia
(59) rezulta
%, — %9 = nb,

unde » este un intreg.

b) Derivatele functiilor $, g, @, f, f, existd si sint finite aproape peste
tot. Fie M,, M,, M, multimile de puncte in care p, ¢ respectiv ® admit
derivate finite. Formulele

{ Fx+9) + fi(x) = O'[p(x) + q(y) 1P’ (x)
flx+y) =0 [px + 9]¢ (60)

sint valabile pentru sistemele de valori x, ¥ astfel ca
x € My, y € My, p(x) + q(y) € M, (61)

c) Functia f admite derivatd finitd in ficcare punct.
E suficient si ardtdm cid pentru orice z € (—oo, 0o), e¢xistd x, y astfel
caz = x4+ ysl x, y si satisfacd conditia (61). SA consideram transformarea

t = ¢(x) = p(x) + ¢z — x) (62)
a mulfimii numerelor reale in ea Insdsi. Dacd x,; si x, au aceeasi imagine
prin (62)
(%) + 9(z — xy) = p(xy) + gz — 1),
atunci din (38) rezultd

filx) = fi(x,)

si deci in baza punctului a), |x, — x,| > 0. Fie I un interval de lungime
mai micd decit 0. Transformarea (62) este biunivocd pe I si deoarece Y (x)
este o functie absolut continud, aceastd transformare indeplineste pe [
conditia N de a transforma orice mul{ime de mdisurd nuld intr-o mulfime
de misuri nuld. Asadar mulfimea M,NI se transformi intr-un interval
din care se scoate o mulfime de misurd nuld, de asemenea multimea punc-
telor x, pentru care x € M, NI si z — x € M,. Deci se poate alege x,
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It
-1

astfel ca x, €e M\NI, 2 — x4 € My, 1, = $(xy) = p(xy) + qlz — x,) € M.
Perechea x,, z— x, satisface conditia (61) si astfel am demonstrat cd functia
/ admite derivatd finitd in orice punct.

d) Functiile d, ® si ¢ admit derivate finite §i diferite de zero in orice
punct. Intr-adevidr, ecuatia (38) se poate scrie sub forma (42), in care
® joacd rolul lui f, deci rezultatul c) se poate aplica lui @. Rezultd cd
formula (60,) este valabild fird exceptie. Daca @' s-ar anula intr-un
punct, / ar fi egal cu zero intr-un interval, contrar ipotezei ci aceastd
functie este strict monotoni. Rezultd existenta lui ¢’ s1 ¢d nici /' si nici
¢’ nu se pot anula.

¢) Functiile f', @, ¢’ sint punctual discontinue (pe orice interval
aceste functii au puncte de continuitate), céci, fiind derivate finite peste

tot, sint de clasa 1 Baire. Rezultd cd 7‘/, si —‘,, sint functii punctual dis-
q

continue.
f) Formula (60,) este valabili peste tot, iar (60,) pentru x € M,,
y oarecare. Prin impdrgire deducem ecuatia functionald (40), valabila
pentru x € M,, y oarecare, in care G si Q sint functii punctual discontinue.
g) Functille G si @ sint continue peste tot. Fie intr-adevidr y, un
punct de continuitate pentru ¢. Atunci toate punctele x + y,, unde x € M,
sint puncte de continuitate pentru G, cici avem pentru x fixat in M,

lim G(§) = lim G(x + y) = lim [P(x)Q(y) + R(x)] =

£ 53y P> Yo ¥, .
= P(x)Q(yy) + R(x) = G(x + ¥,).

Agadar aproape orice punct de pe axa reald este un punct de continuitate
pentru G. Deci, v, fiind an punct oarecare, putem alege v, € M, astfel
ca x, -+ ¥, & fie un punct de continuitate pentru G. Avem

Glay +y) = Pla)Qy) + Rlxy).

Tiniud seama cd P(x) 320, rezultd ¢d Q este o functie continud in y,.
Asadar functia () st fmpreund cu ea functia R sint continue peste tot.

Dar atunci functiile P, Q, R, G sint indefinit derivabile [9] si putem
aplica rezultatul de la punctul 3.
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KOTOPON Onpeieamiach teprapian onepannd:

T T R N B A0S h
Tar, uTo0L YpABHeust (2) tieal 1o O {HOMY @AHHOMY peiuenio 8 ¢, st o, b, ¢, d, npo-
H3BOJALHO GUKCHpoOBaHHbX B ¢ ©7 . Ecoit iveercs HelTpadbHblil 9jeveHT ¢ € () o cpolic-
reont (3), (¢, F) uaseiBaercst meprapruy agnos. CooTHoweHne (1) onpejedsier usomonu
MEAIY JIBYMA KBasurpyipavi. Lcan & ospasiercs TOMJeCTEeHHbIM npecGpasopaHieM, line
es edqsHiio usomonuw. B padote mepraprus MKARD NOHINAETCSE MHOAECTBOM TePHAPHBIX
KBA3HCPY IO, H30TOUHBIX, ¢ O1HOI Jaiioll TepHapHOll kKBasnrpynnoil.

Psiton ¢ TepuapHbiig HeAPEPbIBHBIME KBaguIpyunann (xeria ) sipisiercs jledcr-
BLTEILHBIM HHTEPBATONM oI5 nenpepnnnoll dynxuneil), paccMaipBpaioics W J2oRaabHoe
MepHUPHbBe  KBAZUS DY N6, OTIPELeAC HbIe chelyiompy cnocobon: nyere Py Ve By 1pH
ORPECTHOCTH TeHCTBUTeILHON ocl;,  mpebyemca,  «molol  HEN pe puiérad (pz/fm uuq (1) Obl1a
oupeetena s o €17, veT, c€ 1 i nralnl wveancs oxpectnoern Uy, Vb, C VL, CI

Py 980y vay sl (ay € 10y € 17, 00€ Ty 1ak, utobel jis o € l1 b& ‘._.. c€ 13, de V4,
ypasneinust (2) Hyvean 1o o oMy eaninony pewenio 8 Vo, P, 1V, cooreercteento. Ecan
B wacTnoery Vo Vo Fyoxy, Vo Zy - ¢, HMBETCH A0KQAVHOLL mepuuprotit ayn. Ecan
dopuyaa (1) viopaersopera TOILKO LI 0H0H KaKof-TH60 OKpecTiocTH, oHa ornpejledaser
ARAAbAYI0 wgomonuw. TokaabRasx MKARL ABJISETCH  MHOMKECTBOM JOKAJILILIX TePHAPHBIX
KBAIMCPY U, JOKAILHO H3OTOURBIX ¢ JOKATHIHOH TepHapHO{l Keasurpynuot.

Plhvern (O, F) repuapuast KBasnrpyana i i, NOCTOSHHBIL saevent na (. Bunapnas
oHepatis (X V) =7 (r, v oz, onpeiessieT SHapiyvio KBasurpyuny ga (), HasBalHYIO paspe-
30N 2 TeDHAPHON KBasnrpynab (O, I'). AHATONHIHO ONpelessuGTCn Paspesbl ¥ o v,

Tepnapnas KBasnrpyuna NASLIBACTCH PEYIAPHOU, €CIH VI0BJACTBOPSAT 0GuCUEHHOMY
yeassuw ak pumud Peddesteticrmepa (10.6). D10 YCA0BHE SIBISETCS WHBAPHAUTHBIN ¥ H3OTONHHA,
CIEAOBATEILHO MOKHO ONPEITHTHL TKANHL PerYIAPUOLl, eca 01 NPeACTABHTEN ] ABJASETCS
peryasipiubir. Jlokazaiocs B 8  uTo, HeoGXO0AMMOE B I0CTATOUHOE VCI0BHE Al TOTO,
UTOGLE TEPHAPHBIL TV GbLT PErVIApPHBIN. CIeAVIOULEe: BCe paspesbl &, ¥, o J0JT#KHH ObIThH
FAABHDIMIE H3OTOTIAMH, KAWL ¢ OAHOH TPVINOol.

B aanwoli paGoTe mokasano, HTO. ecau paspesvt X 1y HEILpe poleHo Quide peH yu pyemoeo
AVKQAWHRORO  MEPHAPROSO AN, HEASIOHICH  CAGBHBMUIL U30MonaMu. Kax sl ¢ oOHot epynnot,
moeda onepayus 3nioco ayna sotpaxcaemes aubo gopmyaod (28), audo gopyyaon (54), 20¢
ke-nocmosiinag %= 1, ap (Coomeememaen o k) -Cmpoeo MOHOMOHHAS U HE L Pe puiBHO Jughdie peryyu-
pyemasn pynKud. (‘..e AVET, UTO paspespt & A6AHICMED MAKKE SAGBHNMUL UI0Monamu ¢ odHol
epynnoi .

Qopuyiabt (28) 1 (54) Ooti nafienst 4 B padore 10, HO B JOUYUIEHHH, Y4TO TPH
CHCTEMbBl Daspesos +, Vv, 2z SBJIAIOTCA FTABHBIMH H30TOMaMM, KaxAbll ¢ OXAHOI rpynnou.
UroGut npHiTH K BbILEYKA3AHHOMY pe3yanTary, peliaercd ¢yHKUHOHATILHOE ypaBHeHHe
{38) B KJacCe CTPOFO MOHOTOHHBIX H HenpepsiBHO auddepenunpyenb X Gy rKiUHl pas f, @, p,
g noaas fy == const. Pewenue dano dopsyaaru (47) wau cocmagaeno us AUHEAHBX yHK Ll .
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To me camoe peuienie HaAXOINTC B Godee OGHIHX VCIOBHSE X A0COTIOTHON HeNPephiBHOCTH,
BMECTO Auihepe HILHP YeMOCTH .
M3 BblieyKa3aHHOTO PEe3Y.iLTaTa BbITEKAET PH.L CBOACTB 18 PEryISpHBIX TKaHell, B
AOUVIeHHIL HenpepbiBHON tidvbepeniipyesocTi:
Has caobaabron mxanu  ycaosus (RGY @ () seasiomes sxeusdieHmeoi . TKaHb,
Oyayvui dokaanuofi, yerosie (O)  pireadr 3a cofoil veaosue (KG), Ho 1e 0 o6paTHo.
Pacesotpuy B 3BKARAOBOM TPEXMEPION HPOCTPAHCTBE 4 NyuKa MA0CKOCTeli M orpa-
HIUHMCST 067aCTLI0 He cogeprrauieil Hit ool TOUKH H3 HOCHTeNell 9THX HYUKOB.
Tonoaveuneckue o6paasl 3Mux MKAHEL COBRAIAIOM ¢ MKAHIMU €0 cBoticmBon (G,

Jokaahunte peeyaapuoe mraru Opa4med Ha 5 K.1ACCO8 MONOAOCURECKIL IKGUEUICH INHDI X
MNUHe .

TISSUS TERNAIRES REGULIERS

(Réxumé

U quasi-groupe fevnaive (O, 1) (ou une N-algéhre) est un enscmble ) pour lequel on
a défini Nopération ternaire

H fow s Ay (1)

telle que les ¢quations (2) aient chacune une solution unique en @, pour «, b, ¢, d fixés
de fagon quelconque en @ "7 . Si UVdlément ncutre ¢ € () avee la propriété (3) existe, (O, F)
s'appelle loop  ternaire. Ta relation by diinit  [isofopic entre les deux quasi-groupes. Si
foest la transformation identique, nous avons uane isofopic principale. Un tissu lernairve est
concu dans notre travail comime  Pensemble des  quasi-groupes  ternaires isotopes a4 un
quasi-groupe ternaire donnd.

A cotd des quasi-groupes ternaires continus dorsque ¢ est un intervalle réel et 17 une
fonction continue), on considére aussi les quasi-gronpes ternaires  locawr, qui se définissent
comme suit: o soit 17,0 1,0V, trois voisinages de axe réel:  on demande que la fonction
continue (1) soit difinic pour v € '), v € 1, € .

et qu’il existe les voisinages Vl c .
, . , . . ,
A i Vo o g9 Flag v zg) vy € 170 v, € 17,0 5y € 17, tels que, pour « € - hE V2,

. ,

[ 1’3, d € 14 les dquations (2) aient chacune une solution unique en V7, 1, et ', respecti-
vement. Sien particulier 7 I, | R Zy e, nous avons un loop ternaire local.
Si la formule (4) n'est virifice que pourun voisinage, elle définit une isotopic locale. Un
tissu local est Vensemble  des quasi-groupes  ternaires locaux, localement  isotopes a un
quasi-groupe ternaire local.

Soit (O, 11 un quasi-groupe ternaire et o, un élément fixve de ¢. L/opdération binaire
(x, v} = [(x, vy, 250 définit un quasi-groupe binaire sur @, nommé une section = de (Q, I).
On définit de fagon analogue les sections v ot .

Un quasi-groupe ternaire se nomume régulicr s'ilsatisfait & la condition dv fermeture de Reide-
metstey géndralisée (RG). Cette condition est invariante pour les isotopes: on peut donce définir
un tissu comne régulier si un représentant est régulier.

On a démontré¢ "8 que la condition nécessaire et suffirante pour guun loop  ternaire
soit régulier est que toutes les sectinns v, v,z sHientdes isotopes principaux, chacun & un
groupe.

L auteur démontre que, si les sections x el v d’un groupe ternaire local, confindment diffé-
senttable,  somt des isotopes principaux chacun aive un groupe, alovs Vopération de ce loop
s‘exprine soil par la formule (283, soit par la formude (84), ot k est une constante diffévente
de 1 el @ (respectivement h) une fouction strictesnent monotone el contintiment différentiable.
Hovésulte que les sections = sont de méme des Isctopes principauy avec un groupe.

Les formules (28} et (34) ont ¢té tronvées aussi dans Uarticle 10, mais dans hypothese
que les trois systémes de sections v, v, z sont des isotopes principaux avec un groupe chacun.
Pour obtenir le résultat ci-dessus on résont 'équation fonctionnelle (38) dans la classe des
fonctions strictenient monotones et contintunent différentiables pour f, d. p, g et pour f] ==
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const. La solution est donnée pavles formules (47) ou elle est composée de fonctions linéaires. La
méme solution peut étre trouvée dans des conditions plus générales, de continuité absolue,
au lieu de dérivabilité.

Du résultat obtenu plus haut découlent une série de propriétés pour les tissus réguliers,
dans I'hypothése de dérivabilité continue :

Pour un tissu global les conditions (RG) et (0) sont équivalentes. Le tissu étant local,
la condition O entraine la condition (K, G), mais non inversement.

Considérons dans l’espace euclidien tridimensionnel 4 faisceaux de plans et restreignons-
nous 4 un domaine qui ne contient aucun point des supports de ces faisceaux. Les images
topologiques de ces tissus coincident avec les tissus a propriété (RG).

Les tissus locaux véguliers se vepartissent en § classes de tissus topologiquement équi-
valents.



