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EINE ANWENDUNG DER THEORIE
DER GRAPHEN IN DER NOMOGRAPHIE

VON
L. NEMETI
(Cluj)

In einer fritheren Arbeit hat G. Aumanmn ein Problem geslelll und geldst, das
fiir die Fragen der approximaliven Nomographie von Bedeutung ist. In vorlie-
gender Arbeit wird eine andere Lisungsmethode dessclben Problems vorgeschla-
gen, welche einerseits gewisse, in der Aumannschen Arbeil nur nebenbei erwidhnte
Seiten des Problems niher beleuchtet und die anderscits bedeulende Rechen-
vorteile gegeniiber des Aumannschen Verfahrens aufweist.

1. G. Aumann hat in einer Arbeit [1] folgendes Problem behandelt,
das fiir die Fragen der approximativen Nomographie bedeutsam ist :
es sei die reelle Matrix 4 = (a,), der Ordnung n? gegeben (wobei die
Elemente der Hauptdiagonale sdmtlich verschwinden). Es sind die Werte

der Unbekannten s und #, ¢ e N = {1, 2, ..., n} gesucht, welche
die Bedingungen
(1.1) @ — @ +s>ay, 4,je N

80 befriedigen, dafl der Wert von s minimal sei. Wir bezeichnen diesen
Wert mit 5.

In vorliegender Arbeit schlagen wir eine Methode zur Losung dieses
Problems vor, welche wohl weniger Rechenarbeit erfordert als die von
Aumann angegebene.

Im ersten Abschnitt der Arbeit zeigen wir die Losungsmethode, im
zweiten werden die notwendigen Beweise gegeben, im letzten Abschnitt
wird das Verfahren auf ein Zahlenbeispiel angewendet.

Es sei B = (b,) eine Matrix mp-ter Ordnung und € = (¢,) eine
pn-ter Ordnung. Wir nennen die Matrix D = (d,,) mn-ter Ordnung das
‘OH-Produkt* von B und ¢

(1.2) D=Bx*(
* R. Cruon und Fh, Hervé [3] helen diese Opcralicn eirgefilnt.
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deren Elemente durch
(1:3) d

ij

= max (b, - | — /
e ,,( w t Cy) 1 =1,2, 15 500
. . . l — r) !
definiert gingd. = v e

Mit Hilfe dieser Formel kann man auch die CH-Potenzen einer

i C oA i 3 = i SW
Von der gegebenen Matrix A (1.1) bilden wir die (31’st((af1 t‘)frllf’g

quadratischen Matrix A definierern : A*® — (gt s
(¥ 3

tenzen und bezeichnen
(] 4) A = ms
. 1 = Max @, &, = mg 2 :
DAX Gy X I'Jel(lx @3y .. A, =max a*(
l A ieEN
Wir. behaupten den

SATZ 1 kleinstmogli & {
5 1. De Ileinstmogliche Wept 5 der Unbekannten s im Un-

gleichungssystem (1.1) ist durch

(1.5) § = max|1, 2 A
12 9 J *edy =
] n

gegeben.

Um die Wert :
die Werte der Unhekannten T, © € N gzu finden, setzen wir
L % ] ¥ il

den Wert 5 in (1.1) ein ung erhalten dadurch die Bedingungen

1.6 ] i,

( : ) o= 2By, 4§ e W,

mit

(1.7) b.:{a”—s’ fiir 7 = j
0, fir ¢ = j.

BEs gilt
SATZ 2. Das § ) igli
: : s System ist vertraglich und J ‘ ; ; 5

il ; erty na hat unendlich viele Lisunge;
it N}‘ :'rfeﬁﬁa ;f?iltisiﬂﬁéﬁ %Jeh(la?blien Velktor (Zeilenmatrix) Y"Ui“?gf‘;: [

el der Reihe nac i tor G 2 [ o v
wobei die Matrix B — (b,,) "CI‘Wendetn:‘f;({{{e Veltoren X#— {#® | i € N},
X=Xy g
(1'8) {JI@ — Xl _uB

oder explizit aufgeschrieben

(1.9) B — max (g :
§ ]-'Iglig (rj + b“) te N’ b= 0? ]-) 2) il
Wir haben den

SATZ 3. Hs gibt eine natiirliche Zahl p < n — 7 Jiir welche
(1.10) XF = FPH

gilt. Der Velktor X — x»
feann [41]),
Dieser, durch dag iterative Verfahr
T et er fm ren (1..8) bz_w. (1.9) erhaltene Vektor
(]‘])‘, Wert 5, offenbar zugleich die Losung des Systems
Die Berechnung der Unbekannten

Abiindergiy o ung. § 2, kann durch eine pewiss
i g 8 Verfahrens (1.9) abeekiir 2 e
e Pringing (1.9) gekirzt werden (Anwe.ndung des

stellt eine Lisung des Systems (1.6) dar (V. Pe-
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Wir berechnen die Vektoren
¥l — X% B

(1.11) i

Hierbei erhilt man die Komponenten y!” von Y" durch

(1.12)  y” = max [ max (y +b,),max (y, +b,)] i=1,...,7

§=1. ...i—1 by vy 22
(fiilr 4 = 1 existiert nur das zweite Maximum in der Klammer)., Mit
anderen Worten, bei der Berechnung einer Komponente der r-ten Ite-
ration verwendet man die Lereits berechneten Komponenten derselben.
Wir bemerken, dafi die Entstehung des Vektors Y aus Y ! von der ver-
wendeten Reihenfolge der Berechnung der Komponenten abhingt. Das
Symbol o in (1.11) ist deshalb keine Operation, es bezeichnet nur eine
Rechenvorschrift. Jedenfalls erhdlt man nach ¢ <n —1 Schritten

(g<p)
(@13) X = ¥ = FrL,

Da der Ausgangsvektor X° beliebig war, stellt der durch (1.10) bzw.
(1.13) definierte Vektor die allgemeine Lisung des Systems (1.6) dar.

2. Zunichst ist es klar, dafl das System (1.1) vertriiglich ist. Sind
die x, nidmlich beliebige Zahlen, so werden alle Bedingungen in (1.1)
befriedigt, nimmt man nur fiir s einen hinreichend groflen Wert an.

Um Satz 1 zu beweisen, ordnen wir dem System (1.1) das vollstén-
dige und symmetrische Graph ¢ = (N, N x N) zu. Jeder Unbekannten
x, entspricht der Knotenpunkt ¢ des Graphen und jeder Ungleichung
(¢, j) aus dem System (1.1) die gerichtete Kante (Bogen) (i, j) in G.
Dem Bogen (¢, j) e N x N wird die ,Linge’ a, — s zugeordnet.

Es ist bekannt, daf das System (1.1) dann und nur dann vertriaglich
ist, wenn es in dem zugeordneten Graphen @ keine Kreisbahn mit (strilt)
positiver Linge gibt (R. Roy [2], [6]).

Wir haben also sédmtliche Kreishahnen zu untersuchen. Der kleinste
Wert von s, bei welchem obige Bedingung noch erfiilllt ist, ist eben &,
Wir nennen eine Kreisbahn elementar, wenn sie die Knotenpunkte, durch
welche sie fiihrt, nur einmal enthiilt. Eine nicht-elementare Kreisbahn
kann in elementare (ihre Komponente) aufgeteilt werden und ihre Lénge
ist die Summe der Lingen ihrer Komponenten. In einem endlichen Gra-
phen gibt es offenbar nur eine endliche Anzahl von elementaren Kreis-
bahnen. Bezeichnen wir mit Z, (s) das Maximum der Lingen aller ele-
mentaren Kreisbahnen r-ter Ordnung (die » Bogen enthalten), und it
(2.1) M(s) = max L(s)

r=1,..., n
(in einem Graphen mit » Knotenpunkten gibt es elementare Kreishahnen
hochstens n-ter Ordnung), so lautet die Bedingung fiir die Vertriglichkeit
des Systems (1.1)

(2.2) M(s) < 0.
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Wenn nimlich alle elementaren Kreishahnen negative Lingen be-
sitzen, so haben alle Kreishahnen diege Eigenschaft.

Da M(s) eine stetige nicht-zunehmende Funktion von s ist, so
haben wir

(2.3) ME) — o

Wir fihren jetzt das Graph T' ein, welches dieselbe topologische
Struktur wie @ besitzt, nur soll in I" der Bogen (7, j) die Lange a,; haben
(jeder Knotenpunkt 4 besitzt in I' eine Schleife der Lénge a,). Die
grofite Léinge aller Kreisbahnen der Ordnung » sei hier mit A, bezeichnet.
Offenbar haben wir

(2.4) L, (s) = A, — ps.
Infolgedessen erhalten wir aus der Bedingung (2.2)
(2.5) L (8) L0, =1, ..., n
und fiir 5 die Formel
(2.6) § = max (Al, éi, s ,ﬁJs
2 n

Hier miissen wir noch begriinden, warum wir die Vergleiche nur
big » = m durchfiihren, da doch in A, auch die Linge nichtelementarer
Kreigsbahnen r-ter Ordnung eingeht (die Kreisbahnlingen in I' gind nicht
mehr negativ). Sei v eine Kreisbahn von der Lénge I, soll v die Kompo-
nenten vy, ys; ..., v, besitzen. Die elementare Kreishahn v, der Ord-
nung 7, hat die Lédnge [,. Wir haben dann

7
ge == Z ?Iac: l =
=1

Die Bedingung (2.5) lautet also fiir ol

=
-
2

o

Il
—

L,
() P Pl
~ =, =r,
Wenn aber
s}l_“, =1 ...k
T(I

befriedigt ist, so ist die Bedingung (*) offenbar auch erfiillt. Infolgedessen
geniigt es uns auf Blementarbahnen zu beschrinken, also wird in (2.6)
der Vergleich nur bis » = n vorgenommen. Formel (2.6) ist also richtig.

Wir wenden uns jetzt den CH-Potenzen der Matrix 4 = (a,) des
Graphen I' zu. Die Zahl

a,:."jgm = max(a,, -+ a,,)
ae=EN

gibt die groBte Linge aller Bahnen hoéchstens zweiter Ordnung vom
Punkte ¢ zum Punkt j an. Entsprechend ist die in (1.4) definierte

5
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i 8 i rei héchste
d roBte Linge aller Kreishahnen 16 in
lzf‘?hllﬂslristlﬁm%n leicht einzusehen, daB die Formeln (1.5) und (2.6) aqul

valent sind.
Es ist zunichst klar, daB

() Ay =N
(b) Nooi 2
(e) Ay = By

ist.

831
ng 7-ter Ordnung in
Ebenso lenchtet es ein, dafl die Beziehung

(a) A, > A=A,
gilt. Wir setzen

. e . _—
Ist zundchst A,,, = A, 50 ist (h) offen_bm giiltig. Haben
g0 werden wir zwei Félle unterscheiden :

|
(e) N N
S, = max | Ay, ?, '
und nehmen an, daB
(f) 5, =8 =6
 sei. .
Dann ist
~ Ak+1
lsﬁ.“ = max| g, )
“ b max|oc )\"“).
e = "1
Tis soll gezeigt werden, daf dann auch
() Se11 = Saia
gilt, womit Satz 1 bewiesen sein wird.
|
|
|

A'f:+1 = ?\1.'+17 b
) ¢ 3> —=. Hieraus folgt sofort (h).
' +1
B) 6 < Posit,, Dieser Fall ist unmoglich. In der Tat ist dann A, ,, =
E+1
== A, (siehe (d)), also
Ay A,
. < —_—
S ki1 ok

Diese Beziehung ist aber mit Formel (e) in Widersprueh.



- L. NEMETT

Satz 2 folgt aus der ob 3!
o s - § Jobenerwihnten Roysche i
S==¢ kx?\lrﬁfa \:[?1 :;sl_)a.hn fm G eine positive Linge bgsitzelrlx gv?i?'cdlm
_ ‘erweisen ferner auf die erwihnte Arvhe;j ;
: % . e, y s X e ]
i}lvlhjcgelci];el eine Lo_.sungsmethode tiir Probleme der Ge];;ta;tonl I.Jetea-nu -
» e mit der in Satz 3 gezeigten identisch jgt. R SngsL e

gung, da fir

3. Um die Rechengeﬁchwindigkeit der

betrachten wip folgendes Za,hlenbeispiel. Die MMCthOde e Hlustrieren,

atrix A4 gej
2 -1 3 o 4

=& 01 z-9
A4 = 1. 1 2 9 _3
0 —4 4 1 o
" g =2 8<%
Durch fintmalige Iteration erhalten wiy
s‘:max(fz, E. —8—, B. E 3
2 3 4 )7

. ] >

hier aus 20 Ungleichung ir die 5 Unbekannten ht. Um | n
_ gen fiir die 5 i

zu finden, wenden wip Formel (1.?)} anb -ee: witr?i o Phesosng
bl

g

= max (z" 2 53 i
L m:i (‘/L:’ m: TR i % 2 —1)
.1,;’] = max ((wjﬁ i 3’:’ ﬁé it b 3. = L
w;f“ = max wml, ﬂ?~ R v 4
o (w:~ 3, w;?, g — 1, xj, x5 — 6)
5 ax (w4 1, z — 5, @ — 6, ry — 1, at).

Folgende Tahelle gibt die Trgebnisse der Rechnungen wieder -

R N Y
ry 0 0 0
Loy 0 0 0
3 0 1 1
z 0 0 0
s 0 1 1

Du g i rati i
reh nur zwei Iterationen haben wir somit eine Losung erhalten

Eingegangen am 6, jui; 1967

Recheninstitul der Aleademie
Zweigslelle Cluj
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