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LINEAR OPERATORS THAT TRANSFORM A NORMAL CONE IN
COMPLETELY REGULAR CONES N

A. B. NEMETH

The Fredholm resolvents of a wide class of operators, which are sublinear
with respect to the ordering induced by the wedge W in the normed space
Y, have the property that transform W into completely regular cones [6].
These resolvents approximate indefinitely the identity map in the topology
of uniform convergence on norm bounded scts. This advantage is associated
with the drawback that composing them with convex mappings with values
in Y, the resulting operators fail to be convex with respect to the ordering
induced by the transformed cone. '

The linear operator 4 on Y has the property that compesed with any
W-convex operator yiclds a mapping which is A(W)-convex: The complete
regularity of A(W) remains of a crucial intercst for applications. But it appears
that when W isn’t regular, the linear operator with this property cannot appro-
ximate indecfinitely the identity map (Corollary 3). However, some important
operators (sec the cxample in 12) have good properties from this point of
view. Hence we devote the present note to investigation of the linear operators
A with the cone range A(W) being a completely regular cone.

If the lincar and positive operator A maps the closed normal cone C witi:
nonempty intcrior, contained in the Banach space (B-space), Y, into a comgplc-
tely rcgular cone, then any abstract Hammerstcin operator AF, where F is
C-convex and continuous, is subdifferentiable at any interior point of the dc-
main of F (sce Proposition 19). ' '

1. Operators with ompletely reqular ene ranges. Let Y be a normed space
over the reals and let C be a come in Y, ie., a:subset having the propertics
C+ CCC, tCCC for any positive real number, £, and C ) (—C) = {G}.
The conc C induces a reflexive; transitive and antisymmetric order relation
<onY if we put # € v whenever 4 — » « C. This order relation relates to thu
lincar structure of Y by the properties: # < v implies » + w < v 4 » for any
w in Y and fx < tv for any positive real number £. -Since in the sequel we have to
do with different cones, we shall call C-ordering the ordering induced by C. Simi-
larly, we shall use terms as C-order bound, C-monotone etc.

The cone C is said to be normal if there exists a positive number & such
that jju|| < bljv|, whenever 0 < u < .

The cone C is called completely regular (regular) if any C-monotone norm
bounded (C-order bounded) sequence in Y is fundamental. Any regular conec
which is complete is normal, and any completely regular cone is normal and
hence regular ([3], theorems 1.6 and 1.7). .

If A4 is a linear operator on Y, then the cose range A(C) of A is obviously
a cone. If A(C) C C, then 4 is called positive. For a wide class of cones the
positivity of a linear operator implics its continuity. ‘We shall in the present
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note ignore this aspect and shall explicitly .require in all what follows the con-
tinuity of the cousidered linear and positive operators.- S

The linear operator A is said to be of completely regular (regular) type,
if its cone range A (C) is a completely regular (regular) cone. Since any completely
regular cone is also regular, any linear operator of completely regular type is

1so of regular type. ]
oo We shall frquently use in the sequel Lemma 4 in [6] and hence we shall

tate it here in a slightly modified from. o o .
) 1. Leama. The cone C in Y is completely regular (regular) if it contains

no sequence (y,) having the property ,tlmt Iyl = 2 fqr any 1 and some positive
d and for which the st [Zy": ne N} is norm bounded "( C-order bounded).

2. ProrosITiON. If C liién't a regular cone of the normed space Y, then no
regular tvpe lincar and continuous operator (and hence no completely regular
tvpe lincar and continuous operator) can have continuous left hand side inverse.

Proof. The linear operator 4 has continuous left hand side inverse if and
only if there exists a positive b such that

4yl > bliyll (1)

for any v in Y (see e.g. V. 4.4. in .[4]).
If C isn’t tegular, it contains by Lemma 1 a sequence (y;) with the pro-

”

perty that |y, > d for any 7 and some positive d, for which the set {E Y. n €
1=1

e N} is order bounded. Let y be a C-uppef bound for this set. Then Ay will

be an A(C)-upper bound for the set {E Ay, n N}. According (1) and the
property of (y) it holds =
dydl > bily.]| > bd > 0

for any i. Applying once again Lemma 1 we conclude that the cone 4(C) cannot
be regular. Q.E.D.

We shall denote with (Y) the vector space of all linear and bounded
operators acting in Y, endowed with the norm topology.
i 3. CaroLLARY. Let C be @ cone in the B-space Y that isn’t regular. Then
i open unit sphere in £(Y) with the centre at the identity map I ean contain no
operator of regular (and henece no operator of completely regular) type.

Proof. Any opcrator in the above open sphere h i i
theorem of Banach (see e.g. V. 4.5 il‘ll) [2])1? QT%.Da.S continuous inverse by @

4. Remark. In [6] it was shown that the identit i ini
. - y map can be indefinitel
:gtgr?:;méize% rl;ld ];:hle topology of the ,uniform‘convergencep on norm boundeg
transiore | coneo én rlclzsolvents of jsome sublinear operators. These resolvents
suboones of e e t“', ose closure Isn't a subspace in some completely regular
Gered tapor 18- stricted to the linear and continuous operators the consi-
pology is quite the norm topology. Intuitively the above cited result
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i ,arbitrari to it”*- which are comple-
that a cone contains subcones ,;arbitrarily close tc 1ple
gle;nrsegular. Although, by Corollary 3, the transformation of a cone that isn’t.
regular into a such subcone cannot be realised by a linear operator.

N. The property of a come in_a normed space to be com-
ﬁlcteli; rPelg}z?ll;(r)'si':I;reservcd 1be j:myy linear and boundcd operator with continuous
left hand side inverse. - . o

Proof. Let C be a completely regular cone and assume that A(C) isn’t com-
pletely regular for some linear and bounded A with continuous left hand side
inverse. We have for any y the relation (1) for some positive b. Invoking
Lemma 1, there exists a sequence (y,) in C with [|4y|| > 4 for some positive

«

d and any %, such that theé set {E Ay, ne N¢ is norm bounded. We have for
Eyt
=1

”
dingly the set {E y,:n e N} is norm bounded and we have get via Lemma 1 a
i=1 -
contradiction with the hypothesis that C is a completely regular cone. Q.E.D.
6. Remark. Obviously, any linear operator of finite range preserves the
complete regularity of a cone. The operators constructed in 12 and 14 furnish
other examples having this property. However, there exist linear and compact
operators that transform some completely regular cones onto cones without
this property (see the example in 17). " .

Let & and € be subsets in £(Y). We shall say that € 18 modular' over H.

2b

any ¢ the relation ||y,|| = d/f|l4]| > 0, while from (1), 2 Ay, l Accor-

L

if for any » € N, any B, in & and any C, in @, the operator ) B, C,is in C:
i=1 - ‘

If & contains the identity map, then it suffices to restrict # in the above defi-
nition to be > 2. It is straightforward to show that if & contains all the
positive multiples of the identity map (respectively, its multiples with scalars
in [0, 1)), then if € is modular over &, it is a convex cone -(respectively,
a convex set). If € is modular over itself we shall say that it is awfomodular.

We shall need in: our next reasonings the 5 L

7. LeMuMA. The sum of a finite number of completely regular subcones of a
normal cone is a complciely regular cone. -

Proof. Let C, and C, be completely regular subcones of the normal cone
C and assume that C, 4- C, isn’t completely regular. By Lemma 1 there-exist
the 2sequence ) in C,, j=1, 2 and a positive number d so to have lly: +
+ yill 2 d for any i, while the set L

(R .

lg i+ :in e N] h o

is norm bounded, Passing to a subsequence we ca ' withe
the gemaraney sed: to a st qu n assume w:t.hout loss of

L

;T =aR, ke, R (3)
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n Y, we have .

i

On the other hand if < denotes the Crprderillg 1
. n vy m ' v g. . A' '.- N
. 1’ e ~ 1 2
’ O < kz=\’|y,.' < kESl(yl". +yfk) < Z:i@, +y‘-)r 9
wherefrom, using the normality of the cone C and the norm boundendess of
(2) it resuits that the set .

. ».:.‘- A b
E, y;!‘,_ ke N]
E=1" _

is norm bounded. But this, together with (3) contradicts the complete regularity

of C,. Q.E.D.- ’ o R

8. %ROPOSITION. Let C be a normal cone in the normed space Y. Let B
deiote the subset of C-positive operators in £(Y) that transform any completely regular
subconc in C in completely regular conc. Then B is an automodular convex cone

in £(Y). . , . .

Proof. We have obviously B,B, € & whenever B, and B, are in &. Fur-
ther, by the inclusion . <o . :

B+ BIO CBO) + B0

: Lot :
it follows that the cone in the left is completely regular being the subcone of
the cone in the right, which is completely regular by Lemma 7. That is, B, 4
+ B, is in & From Proposition 5 we have that I and any positive multiple
of its are in & and hence we are done. Q.E.D. .

9. PROPOSITION. Let C be a normal cone in the normed spacc Y. Let @
denote the set in £(Y)-of the operators that transform C in complctely regular subco-
nes of its. Then € is an automodular convex cone in &(Y), which is modular over
&, where & 1s the set in £(Y) of C-positive operators transforming the compleicly
regular subcones of C 1n completely rcgular oncs. '

. Proof. Since € is contained in & it suffices to prove that it is modular
over & Forany B’ in & and any C’ in @ the composed operator B'C’ is obvio-
usly iz €. Because I is contained in 8 we have only to prove that B,C, + B,C,
1s 1n € whenever B, and B, are in & and C, and C, are in €. But this follows
directly from Lemma 7. Q.E.D. S T

10. Remark. From 14 it follows that the cone € i i
in the morm topology of the space £(Y). ne € in general » mot closed

oper::a[i; 'A and B be in £(Y). We shall put A‘ < Bif B— A4 is a C-positive
11. PropostTION. Let 'C be a normal cone in Y. L ‘
o ) 4 ' 2 . Let @ denote the set o
C-positive operators in £(Y) which transform C in completel)y regular ci)cn;.:. I;
Sfor some A and B in (Y) there exist the positive scalars « and B such that

B < A<BB (4)
then A is in € if and only if B is in @.

Proof. The rclation (4) defi 3 \ R Ceei
sufficient to show that %)E e11'1es in fact an equivalence relation. Hence it is

: _ implies 4 « €. According t i
for any sequence (z) in C the norms 1Bzl and |4z, igel;\? :&rﬁl&}; C;fm?é

* PR “.
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i ed from above and respectively, lower boungled by a positive. number.
%g;ggbo;;::l Lemma 1 in the \yapy we have donme it in the preceeding proofs,
we get the required implication. Q.E.D. -

2. Examples. The operators of finite range transform a closed cone in com-
pletely regular ones. The image by a compact operator of a~closed‘cone is a
compactly generated cone and hence -the compact operators can -be suspected
to improve esentially the properties of a cone. Are they of completely regular
or of regular type? Unfurtunately they don’t. The aim of this paragraph is to
show that the property of an operator to be of completely regular as well as
of regular type is far to be characterizable with a- property like compactness.
There are linear and continuous operators of rather general form which are of
completely regular type, while some compact operators don’t have this property.
In the same time we complete the results in the -preceeding paragraph. -

Let C[0, 1] denote the space of continuous real valued functions defined
on [0, 1] endowed with the uniform norm and orderéd by the cone C of non-
negative functions. This cone is closed and normal.

12. The lincar operators in C[0, 1] with the representing kernels bounded
rom above and from beclow by positive multiples of « measure function, which
represents a lincar and positive functional, are of completely regular type.

Let A be a linear and positive operator in C[0, 1] and assume that the
representing kernel K of its (sce e.g. VI. 9.46 in [1]} satisfies the following
conditions : : S e

(i) There exist a normalized function g of bounded variation on [0, 1]-and
a positive real B, such that NP

0 < K(s, dt) < Bg(at)
for any s and ¢ in [0, 1];
(i) There exist an s, in [0, 1] and a positive scalar « such that
_agldt) < K(s,, dt) R

for any ¢ in [0, 1].
For any y in the cone C it holds by (1)

Iyl = sup {30 KGs, &) < 6 () gtar). 3

0 o

If |l[Ay]| > d, then this relation together with (ii) yields
1

- adfp < (3OK(so dt) = (43) (s,). , )

0

If (2) is a sequence in A(C) with the L iti
_ property that >d
d and any 4, then we have by (5) the ineguality e for some positive

a z2(so) > ad/B L SIS
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and hence

)

I

}lnﬁd/ﬁ,' !

i=1 b

that is, the set iz‘ p € N] cannot be norm bounded. I’l‘hus by Lemma '1,
im1 . S , "
A(C) is a completely regular cone. , P . N

We have in particular, that if the representing kerncl K of the positive and
compact operator A satisfies the condition ., .. . .

, K(so ) 20>0 ’ '
Sor any t in [0, 1] and some so in this interval, then A is of completely regular
type. ‘

I,

Indeed, we have then:

Kso, 1)dt > adt,
and .
T K(s, t)dt < pdt

for any s and ¢ since K is continuous and hence bounded.

13. Example of a positive integral operator with continuous kernel acting in
‘C[0, 1] that 1su’t of completely rcgular type.

Consider the increasing sequence (a,) of distinct. real numbers in ©, 1/2).
Let we construct the functions %, by putting for any » € N

ki(s, t) = max{0, (a, — @p41)* — (¢ — @, — @ny1)? — (s — @, — @ny1)?}

(s, 8) € [0, 1] x [0, 1]

They have the properties . |

(i) #, vanishes outside the square [2a4,, 2a,.,] X [2a,, 2a,41];

(1) 0< A,(s, ) < max{0, (¢, — @pp1)2 — (¢ ~ @, — Any1)} = ku(a, + Gnis, £)

(i) max k(s §) = (@, — @it o
According (ii) and (iii) the function

’

K(s, 1) = f: ko(s, ¥)

n=l

is non-negative and continuous on 0, 1] x [0, 1].

We shall show that the integral opetator {A defined by the relation

. .
(4y)(s) = Sms, 1)y(t) dt

0

1sn't of completely regulat type with Tespect to the cone C of the non-negative
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functions in C[0, 1]. To this end, we consider the sequence (y,) in C defined
by 1 7 ) -
y,(f) = max {0, c,((a, — )P — [t —a, — an+1)l)}, # € N,

where
2a

¢, = ( S (@0 — @ns1)? — (t — @0 — @n41)?)? dt). )

ol

Then we have the properties
1
(a) The function z,(s) = Sk,,(s, t) y.(t) dt vanish outside the interval

0
[Za‘y 2an+l] y

(b) flzall = 15

1

(c) Sk_(s, £) y,(¢)dt = 0 for any s, whenever m # n.
[

From (a), (¢) and the definitions it follows that

z,(s) = (d,) (s).
The properties (a) and (b) imply

”
224
i=1
for any # in N, wherefrom via Lemma 1 we conclude that A(C) isn’t a com-

pletely regular cone.

14. The integral operator A constructed in 13 can be indefinitely approxima-
ted in the norm topology by positive intcgral operators of completely regular type.
We refer for the notations to the preceeding point. Consider the function

K. t) = L‘ his, )

and let the operator 4, be defined by the relation
(4ay)(s) = §K.(s, y@ya.- -7 ¢
From the properties (i) and (iii) of k,,owe have for any y in C
0 < (4y)(s) — (A,y)’(s)-—- §(K(s, t) — K, (s, £))y(t)dt =

0

=1
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B I
l .
= i k(s z)) v{t)dt < max (a, — a..+:)"'Sy(t)dt < |yl max (@, — appq)2
—S n=mt1 B apmil 7
0
and hence 4 — AL < max (a, — -
nam+1
‘here A converges in the norm to A when m '€ co.
" her\({’?x;:ave" tonchegk that A, is for any m of completely regular type. We
observe first that for any y in C the function A,y attains its_ local maxima
at the points a, + @y, .- -» @p F+ Am41. Indeed, suppose that s is in the interval
24, 20;,] =1 ... m). Then by the property (i) of &,

K.(S»' tj}'(t)dt = Sk:(s» t)y(‘)'dt. (s = [2a), 2aj11]).

0

(A.)(s) =

O,

{
Now, by the property (ii) of %,
1 5 NI A ) o 4

(6. Dyt < e, + asn 030 = (49) @ + ),

L] 0
that is, for s in [2a, 24;4],
(4. 2)(s) < (Aay)e + a541)- )

Consider now an arbitrary sequence (z,) in 4,(C) with the property that
llzll = € for some positive 4 and for any . We have

z(=A-y.) i EN'

for some y, in C. According to the property '(i)‘ of %, it follows that z,(s) =0

for s in [0, 1]\[24;, 2ap4,]. By the relation (7) we have that the maximum

of z must be attamed on some point @, + a4, 7 =1, ..., m. That is, since

Izl > @, there exists at least a j(1 < j < m) so to have '
z(a, + aj41) > d.

Because 4 can have a finite number of values, it follows that there exists an
index & (1 <% < m) and a subserquence (uz;) of (z,) such that

zi,(d. + @) >d
for any / in N. This means that

4

Lt o) >,

and hence the set

\2Aneq
Jj=1
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cannot be morm bounded. From Lemma 1 we have then that A4_(C) is a com-
ly regular cone. ' '

p]etelg. The operator A constructed in 13 is of regular type. We have to show

sn accordance with Lemma 1, that if (z) is a sequence 1n A(C) with t}?e prlcl)-

perty that there exists a positive d such that |z|| > 4 for any ¢, then the

set

1=1

[iz,: n e'N} 8)

ot be A(C)-order bounded (by any element in A(C)). '
CannLet a be( t):hc limit of the sequence (a,). Then K(2a, ¢) =0 for any ¢ in
[0, 1]. Hence z(2a) =0 for any z in A(C). Assume that z is an element in
A(C) which is a C-order bound for the set (8). This means that

iz,(s) < z(s), s [0, 1], n € N.

Since z is continuous, z(a, 4 a;4,) = 2(2a) = 0. Assume that » « N has the
property that z(a, + a;4.) < d/2 for any j > h. Since z,(s) < z(s) for any 4 and
since |lz,]| = d, it follows that the maximum of any clement z, must be attained
at a point s < a, 4+ @44;. According the reasonings in the point 14, an s with
this property must be one of the points a, 4+ a;4 for 7 < h. Hence we get a
contradiction as in the above point with the norm boundendess of the set (8)
which follows from the C-order boundendess of it. Now, if the set.(8) would
be A(C)-order bounded by some element in A4(C), then it would be also C-or-
der bounded by the same clement. But this contradicts, as we have seen above,
the hypothesis that |z,|| > d for any 4. Thus A4(C) must be regular. '

16. Examplc of a positive integral operator in C[0, 1] with continuous kernel,
which isn’t of regular type.

We shall use the constructions in the example 13, restricting the terms fo the
sequence (a,) to satisfy 1/4 <a, < 1/2, i € N. Let be a, = 1/4 and put

kofs, &) = max {0, (a9 — @))* — (¢ — ag — a,)3}
Consider also the function . .‘

Yolt) = max {0, co((ag — ay)* — (t — ag — a,))%}.

where ¢, is given by (6) with n = 0.
The function
o0
K(s, 8) = D ku(s, t)
n=0
is continuous and non-negative and have the property that
, 1 iy

Vxo6, fyaiae=1 " |

for any s in [0, 11.
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The elements
1
z,(s) = SK‘(s, 1) y(t)dt, n €N

0

are of the norm 1 and have the property that “2 z,,“ = 1 for any m in N. Let
n=1 .

us denote by ¢(s) the function identically 1 on [0, 1], and let consider the diffe-

rence

"

Cug(s) = e(s) — 2 z.(s), m € N.

n=l" (

This is for any m a non-negative function of norm < 1.
Consider the sequence (b,), where b, = a, — 1/4, « € N, and put
h(s, t) = u,(s) max {b, — bp41)? — (t — b, — bssa)?}, # € N.

h, is a non-negative continuous function vanishing outside the strip [0, 1] X
X [2b,, 2b,4,], satisfying the inequality A,(s, £) < (b, — ba41)?. Hence

"0
Ke(s, ) = 2 h(s, ¥) .
.on=1
is a continuous mnon-negative function. Let
v,(t) = max {0, ¢,((by — bus1)? — (¢ — by — bus1)?)}
with ¢, given by (6). We shall show that the compact operator A defined by
. - 1
) @ =K. )y
0 )
where K = K 4 K? isn't of regular type.
We observe first that ¢ and the sequence (z,) are in A(C). Further, we have

1 2bn o .

SK(s, 1) v,(t) dt = S (s, 8) v,(0) dt =

2b

T

= ¢, #,(s) S

2b

(B = basa)® = (t = b, = bpa)2)2dt = u,(s)

by the definition of the sequ;ance (b,) and of the numbers ¢
The obtained relation shows that «, is in 4

{”E:l Z,im € N]

w 7 € N.
(0] and that the set
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js A(C)-order bounded by the element ¢ of A(C). But lIz:,,l[ =1 for any # in
N, and invoking Lemma 1 again we. conclude that 4 isn’t of regular type.

' "17. Example of a linear, positive and compact operator in ¢ that transforms
a completely regular cone in a cone that isn’t completely regular.

‘Denote by ¢ the space of convergent sequences of real numbers, endowed
with the usual norm. Let C be the cone of the sequences 1n ¢ with non-nega-
tive terms. The subcome C, in C of the nondecreasing sequences is completely
regular. Indeed, if y is in Ci, ¥y = (), ¥ <R, then |ly]l = lim y". Accordingly,
for y, and y, in C, we have ly: + 3.0l = flyall + lly.ll and hence there cannot
exist any scquence (y,) of elements in C, such that |y 2 d for some positive

d and auny 7, for which {E yoin € N} is a norm bounded set. That is, C, is
i=1

completely regular by Lemma 1.

Let us consider the infinite matrix of real numbers denoted by 4,
A = (a5)ijere,... @5 =27" 3

with & standing for the Kronecker symbol. If we define Ay for some y in ¢
as to be the multiplication of 4 by the (column) vector y, then 4 can be
interpreted as a linear operator in c. It is straightforward to see that 4 is com-
pact.

Define the sequence (y,) of the elements in the completely regular cone
C, by putting

y.-_—..(o, c ey 0, 2", 2", ...)
n—1 times
Then
Ay, =z, = (20, 22, ..., 20, ...),

where 2 = 27" y7, that is,

z,=1{0, ..., 0,2° 271, 2~2, . ).
n—1 times

We have ||4y,| = llz.]l = 1 and

ly: + Ay. + ... + 4y, < 2
for any # in N. That is, 4(C,) isn’t completely regular by Lemma 1.

3. The subdiiierentiability of some Hammerstein type
e operators. A total
;r@ereq subset of the ordered vector space Y is said tg pbe ap chain. The 2;:13.'
1s said to be chain complete if any chain that is bounded from below (from

above) has an infimum (a supremum) in Y. If Y i

by a closed cone, then the limit of a . ically decesasingy (oomared
( , ny monotonicall 1

-Sequence is also the infimum (supremuym) et (g, {cteasing)

e is also of this sequence (see I1.3.2 in [8)).
I'E)et.xtc'e 1sr§ t difficult to show (see for example the reasoning in(the proof lonf ][Pr]g—
ﬁ: s:v 10?1 in (7)), that a space with this property is chain complete. Thus for
- ¢ have the conditions used in (5] in order to prove the existence of the
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subgradients for convex mappings. Ths -operator F :from the vector space X
to the ordered vector space (Y, <) is said to be convex if

Fltx, + (1 — )m) < 1F(x) + (1 — )F(z,)
for any #, and ¥, in X and any ¢ in [0, 1). The linear operator 4 from X to Y

is said to be a subgradient of F at x if
F(x 4 u) — F(x) > Au

for any # in X.

Suppose that X and Y are B-spaces and that Y is ordered by a closed, nor-
mal cone with nonempty interior. Then if F is a continuous convex operator
from X to Y, then from the existence of a subgradient of F, it follows its continuity.
There exist examples (see e.g. [4]) showing that even for rather nice convex
operators there are points in the domain of them at which no subgradient exists.
We shall use in this paragraph the results we have estabilished in order to give
some sufficient conditions for the existence of subgradients. First of all we prove
the foliowing preparatory result:

18. LExma. The closure of any completely regular cone is completcly regular
too. ' .

Proof. Assume that C is completely regular and C isn’t. Then there exist
a d > 0 and a sequence (y) in C with the property that |yl > 4 for any 4,

so to {2 Yon <€ N] be a norm bounded set (Lemma 1). Suppose that \Z Y€
i=1 3

=1
< o for any n. Let z, be elements in C which satisfy the conditions |jz,]] >
2 d[2 and |z, — y,|| <2~ for any 7. Then

n

[[EA -

=

< E‘ y, —zll <1
1=

and hence
|

for any #n. That is, the set {2 zp:m € 1‘] is norm bounded. Thus we have get
=1

a contradiction via Lemma 1 with the hypothesis that C is a completely regular
cone. Q.E.D. o ,
. 19. ProrosiTION. Let Y be a B-space ordered by a closed normal cone C
with nonemply interior and let F be a continuous convex mapping from the B-spacc
X toY. If A is a positive operator in Y of completely regular type, then the abstract
Hammerstein operator AF has continuous subgradients at any point of X.
Proof. From Lemma 18, A(C) will be a closed completely regular cone. The
operator AF will be convex with respect to the 4(C)-ordering in Y and hence it

will have /T(C)-subgradients in any point of X. Since A(C) C C, these subgradients
will be C-subgradlen'gs too. Hence they will. be continuous opecrators by our
comments at the beginning of this paragraph. Q.E.D.

”»
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20. COROLLARY. Let the space C[0, 1] be ordered by the cone of non-nega-
tive functions and let F be a continuous convex operator acting‘ in.-it. Consider the

Hammerstein operator defined by
1
G(x) (s) = SF(x(t)) K(s, dt),
0

where the kernel K satisfies the conditions in 12. Then G has continuous subgra-
dients in each point of C[0, 1]. ‘

Proof. The positive cone 1n c [0, 1] is closed, normal and has vnonempty
interior. The linear operator defined by : pi

1

(45)) = (YO (s, dt)

0

is of completely regular type by 12. Now, G = AF aﬁd hence we are in the con-
ditions of Proposition 19. Q.E.D.

(Received March 13, 1981)
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OPERATORI LINIARI CE TRANSFORMA UN CON NORMAIL IN CONURI
COMPLET REGULARE

. (Rezumat)

In lucrare sint studiati operatorii liniari §i continui care transformi un con normal in conuri
C?;nplet regulare. Se dau conditii suficiente pentru ca un operator liniar §i continuu din spatiul func-
fillor continue definite pe un interval compact de pe axa reald, si aibi aceastd proprictate. Se

°‘1§t_mle§c operatori liniari i compacti definiti in acest spatiu, care nu transformi conul functiilor
Pozitive intr-un con regular, ) :
N



