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LINEAR  OPERATORS THAT TRANSFORM A NORMAL CONE IN  
COMPLETELY REGULAR CONES

A. B. NÉMET1I

The Fredholm resolvents of a wide class of operators, which are sublinear 
with respect to the ordering induced by the wedge W in the normed space 
Y, have the property that transform W into completely regular cones [6]. 
These resolvents approximate indefinitely the identity map in the topology 
of uniform convergence on norm bounded sets. This advantage is associated 
with the drawback that composing them with convex mappings with values 
in Y, the resulting operators fail to be convex with respect to the ordering 
induced by the transformed cone.

The linear operator A on Y  has the property that composed with any 
ÎY-convex operator yields a mapping which is A{}V)-convex. The complete 
regularity of A(W) remains of a crucial interest for applications. But it appears 
that when W isn't regular, the linear operator with this property cannot appro­
ximate indefinitely the identity map (Corollary 3). However, some important 
operators (see the example in 12) have good properties from this point of 
view. Hence we devote the present note to investigation of the linear operators 
A with the cone range A{W) being a completely regular cone.

If the linear and positive operator A maps the closed normal cone C with 
nonempty interior, contained in the Banach space (B-space), Y, into a compk - 
tely regular cone, then any abstract Hammerstein operator AF, where F  is 
C-convex and continuous, is subdifferentiable at any interior point of the do­
main of F  (see Proposition 19).

1. Operators with ompletcly regular one ranges. Let Y  be a normed space 
over the reals and let C be a cone in Y, i.e., a subset having the property s 
C +  C C, tc C.C  for any positive real number, t, and C p| (—C) =  {0}. 
The cone C induces a reflexive; transitive and antisymmetric order relation 
^ on Y if we put u ^ v whenever u — u e  C. This order relation relates to the 

linear structure of Y  by the properties : u ^ v implies u +  w ^ v +  w for any 
w in Y and tii ^ tv for any positive real number t. Since in the sequel we have to 
do with different cones, we shall call C-ordering the ordering induced by C. Simi­
larly, we shall use terms as C-order bound, C-monotone etc.

The cone C is said to be normal if there exists a positive number b such 
that ||m|| ^ 6||u||, whenever 0 < u ^ v.

The cone C is called completely regular (regular) if any C-monotone norm 
bounded (C-order bounded) sequence in Y  is fundamental. Any regular cone 
which is complete is normal, and any completely regular cone is normal and 
hence regular ([3], theorems 1.6 and 1.7).

If A is a linear operator on Y, then the cone range A(C) of A is obviously 
a cone. If A (C) Q  C, then A is called positive. For a wide class of cones the 
positivity of a linear operator implies its continuity. We shall in the present
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note ignore this aspect and shall explicitly require in all what follows the cou- 
tim htfo f the considered linear and positive operators, . .

The linear operator A is said to be of completely regular (regular) type, 
if its cone range .4 (C) is a completely regular (regular) cone Since any completely 
regular cone is also regular, any linear operator of completely regular type is

a Ŝ° We shah frequently use in the sequel Lemma 4 in [6] and hence we shall
state it here in a slightly modified from. ., , .

1 Lemma. The cone C in Y is completely regular (regular) i f  it contains 
no sequence * (y,) having the property that ||y<|| 5= d for any i and some positive

d and for which the set (¿ y <  : »  e  n J is norm bounded (C-order bounded).

2. Proposition. I f  C isn’t a regular cone of the normed space Y, then no 
rc°ufar type linear and continuous operator (and hence no completely regular 
type linear and continuous operator) can have continuous left hand side inverse.

Proof. The linear operator A has continuous left hand side inverse if and 
only if there exists a positive b such that

\\Ay\\ > &||y|| (1)

for any v in Y (see e.g. V. 4.4. in [4]).
If C"isn’t regular, it contains by Lemma 1 a sequence (y() with the pro­

perty that Ib’ill > d for any i and some positive d, for which the set y , : n e

e  a J is order bounded. Let y be a C-upper bound for this set. Then Ay will

4 According (1) and thebe an A(C)-upper bound for the set ;

property of (yt) it holds

U y {\\ > b\\y{\\ >  bd >  0

for any i. Applying once again Lemma 1 we conclude that the cone A (C) cannot 
be regular. Q.E.D.

We shall denote with £(Y) the vector space of all linear and bounded 
operators acting in Y, endowed with the norm topology.

3. Carollary. Let C be a cone in the B-space Y that isn't regular. Then 
the open unit sphere in £(Y) with the centre at the identity map I  ean contain no 
operator of regular (and henece no operator of completely regular) type.
, -Proo/. Any operator in the above open sphere has continuous inverse by a 

theorem of Banach (see e.g. V. 4.5 in [2]). (j.E.D.
4. Remark. In [6] it was shown that the identity map can be indefinitely

toPol°gy °f the uniform convergence on norm bounded 
transform t u resolvents of some sublinear operators. These resolvents 
suhrnnpc e-4.COni> ^ whose closure isn't a subspace in some completely regular 
d ^ d R' si ‘ct' d *° «K  linear and Smtrauous operators the consi- 

P gy >s quite the norm topology. Intuitively the above cited result



UNEAR OPERATORS THAT TRANSFORM A CONE 5

means that a cone contains subcones „arbitrarily close to it which are comple­
tely regular. Although, by Corollary 3, the transformation of a cone that isn t 
regular into a such subcone cannot be realised by a linear operator.

5. P r o p o s i t i o n . The property of a cone in a normei space to he com­
pletely regular is preserved by any linear and bounded operator with continuous 
left hand side inverse.

Proof. Let C be a completely regular cone and assume that A (C) isn’t com­
pletely regular for some linear and bounded A with continuous left hand side 
inverse. We have for any y the relation (1) for some positive b. Invoking 
Lemma 1, there exists a sequence (y,) in C with \\Ay, || > d for some positive

d and any i, such that thé set |L Ay, : »<£ N| is norm bounded. We have for

any i  the relation ||y,|| > d/\\A\\ >  0, while from (1), 12 Ay< >b 12 y it = i
. Accor­

dingly the set : n€E is norm bounded and we have get via Lemma 1 a

contradiction with the hypothesis that C is a completely regular cone. Ç.E.D.
6. Remark. Obviously, any linear operator of finite range preserves the 

complete regularity of a cone. The operators constructed in 12 and 14 furnish 
other examples having this property. However, there exist linear and compact 
operators that transform some completely regular cones onto cones without 
this property (see the example in 17).

Let o& and <2 be subsets in £(Y). We shall say that (2 is modular over 86.

if for any n e  N, any p, in £  and any Ct in <2, the operator Y2 Bt c <is in. c -

I f  «6 contains the identity map, then it suffices to restrict n in the above defi­
nition to be ^ 2. It is straightforward to show that if $> contains all the 
positive multiples of the identity map (respectively, its multiples with scalars 
in [0, 1]), then if S is modular over oB, it is a convex cone (respectively, 
a convex set). I f  <2 is modular over itself we shall say that it is automodular.

We shall need in-our next reasonings the .
7. Lemma. The sum of a finite number of completely regular subcones of a 

normal cone is a completely regular cone. ■ .
Proof Let C1 and C2 be completely regular subcones of the normal cone 

c and assume that Cr +  C2 isn’t completely regular.- By Lemma 1 there exist 
the ^sequence (yj) in C„ j  =  1, 2 and a positive number d so to have ||y- +  
”1“ y% II ^ d for any %,. while the set .' :

n
(y* +  y<) : n <= N (2)

is norm bounded. Passing to a subsequence 
the generality that '¡, , . we can assume without loss of

IbjJI > d/2, k S X. (3)
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On the other hand if «  denotes the C-ordering in Y, we have

o < E  U  + y ‘>] *  £  + y<] ’= 1 k̂ l

„hefrom . using the normality of the cone C and the norm boundendess of
(2) it results that the.set

IF« • . < '
N

k = 1
is norm bounded. But this, together with (3) contradicts the complete regularity 
of C 0 E j) i
°  8 Proposition. Let C be a normal cone in the normed space Y. Let B
denote the subset of C-positive operators in £(Y) that transform any completely regular 
subcone in C in completely regular cone. Then B is an automodular convex cone

Proo/. We have obviously ByB. e  $> whenever By and Bt. are in S>. Fur- 
ther, by the inclusion 1 •

J (B1+ B 2)(C )C B 1(C) +  B2{C)/

it follows that, the cone in the left is completely regular being the subcone of 
the cone in the right, which is completely regular by Lemma 7. That is, Bx +  
~rB2 is in A. From Proposition 5 we have that- I  and any positive multiple 
of its are in & and hence we. are done. (?.E.D.

9. Proposition. Let C be a normal cone in the normed space Y. Let £
denote the set in £(Y) of the operators that transform C in completely regular subco­
nes of its. Then £ is an automodular convex cone in £(Y), which is modular over 
So, where A is the set in £(Y) of C-positive operators transforming the completely 
regular subcones of C in completely regular ones.

Proof. Since £ is contained in A it suffices to prove that it is modular
over A. For any B' in A and any C' in £ the composed operator B'C' is obvio­
usly in £. Because I  is contained in A we have only to prove that BxCi +  B2C2 
is in £ whenever Bx and E, are in A and Cx and C2 are in £. ' But this follows 
directly from Lemma 7. Q.E.D. ' » •

10. Remark. From 14 it follows that the cone £ in general is not closed 
in the norm topology of the space £(Y).

Let A and B be in £(Y). We shall put A ^ B ii B — 4  is a C-positive 
operator. 1
r  j. H/. P r° pos/tion- LJ *r c  be a normal cone in Y. Let (2 denote the set of
C-positive operators «»  £(Y) which transform C in completely regular cones. I f
for some A and B in i(Y ) there exist the positive scalars a. and (3 such that

a.B ^ A % pB, ' f (4)
then A is in £ if and only if B is in 2.

suffiacnftcJsLw'that s ’ ^ e T r a p S / t f H e n c e  
fo, any sequence W  f„ C ,„e no?** ,Sz.|| V f t i f  .*■ S T S Z  ° L £
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time bounded from above and respectively, lower bounded by a positive, number. 
Using now Lemma 1 in the way we have done it in the preceeding proofs, 
we get the required implication. Q.E.D. '

2. Examples. The operators of finite range transform a closed cone incom­
pletely regular ones. The image by a compact operator of a closed cone is a 
compactly generated cone and hence the compact operators can be suspected 
to improve esentially the properties of a cone. Are they of completely regular 
or of regular type ? Unfurtunately they don’t. The aim of this paragraph is to 
show that the property of an operator to be of completely regular as well as 
of regular type is far to be characterizable with a property like compactness. 
There are linear and continuous operators of rather general form which are of 
completely regular type, while some compact operators don’t have this property. 
In the same time we complete the results in the preceeding paragraph.

Let C[0, 1] denote the space of continuous real valued functions defined 
on [0, 1 ] endowed with the uniform norm and ordered by the cone C o f non- 
negative functions. This cone is closed and normal.

12. The linear operators in C[0, 1] with the representing kernels bounded 
rom above and front below by positive multiples of a measure function, which 

represents a linear and positive f  unctional, arc of completely regular type.
Let ^ be a linear and positive operator in C[0, 1] and assume that the 

representing kernel K  of its (see e.g. VI. 9.46 in [1]) satisfies the following 
conditions: > . ; ,

(i) There exist a normalized function g of bounded variation on [0, 1] and 
a positive real p, such that , .;

0 < K(s, dt) sg pg(dt)
for any s and t in [0, 1 ] ;

(ii) There exist an s0 in [0, 1] and a positive scalar a such that

. ag(dt) < K(s0, dt)
for any / in [0, 1].

For any y in the cone C it holds by (i)

i i
\\Ay\\ =  sup (jy(/) K(s, dt) < P ^y(t)g(dt).

0 0

If IKyll > d, then this relation together with (ii) yields
1 .

ai/p < ^y(t)K{s0, dt) =  (Ay) (s0). (5)

r a ; y that M  * d for some positive
’ ' ■ 2<(s<>) > ad/p . ,
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and hence ,.. ,

| ]l>|  >nadl$,

that is, the set { ¿ v  »  e  n }  cannot be norm bounded. Thus by Lemma 1,

A{C) is a-completely regular cone. , . .
We have in particular, that if the representing kernel K  of the positive and 

compact operator A satisfies . the condition ,

K(s0, t) > a >  0

for any t in [0, 1] and some s0 in this interval, then A is of completely regular 
type.

Indeed, we have then

K[s0, t)dt ^ adt,

and
v  K{s, t)dt < $dt

for any s and i since K is continuous and hence bounded.
13. Example of a positive integral operator with continuous kernel acting in 

C[0, 1] that isn’t of completely regular type.
Consider the increasing sequence (aJ of distinct, real numbers in (0, 1/2). 

Let we construct the functions kn by putting for any n e  N

A.(s, t) =  max{0, (a. — <7„+,)2 -  (t — a. — an+1)2 — (s — an — aB+i)2},
(s, t) *  [0, 1] x [0, 1] :

They have the properties

(i) k„ vanishes outside the square [2a„, 2aB+I] x [2at, 2a„+1] ;

(ii) 0< K(s, t) < niax{0, (a. -  an+1)2 -  (t - a .  -  aB+1)2} =  k.(an +  «»+., Q 1
(iii) max k,{s, t) =  (a. -  «„+,)*.

According (ii) and (iii) the function
r

K(s, <) =  £  K(s, t)
n=*l ■ t

is non-negative and continuous on [0, 1] x [0, 1].
We shall show that the integral operator ;A defined by the relation

1
toOM =  j  A'(s, t)y(t) dt

isn’t of completely regokt type „ it l Iespect t0 theC(me c  of ^
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functions in C[0, 1]. To this end, we consider the sequence (y.) in C defined

by ’ >'
yK(t) =  max {0, c „ (K  -  an+i)2 «-+«)*)>- *  e  N '

where

r - +i \
c„ =  I  ̂ ((«, — «»+0* —. {t — — a„+i)2)2dtj. (6)

Then we have the properties
1

(a) The function ¿„(s) =   ̂k„(s, t) y„(i) dt vanish outside the interval

[2a4, 2«„+i ] ;
(b) IM  =  i ;

1

(c)  ̂¿„(s, — 0 for any s, whenever m #  n.
o

From (a), (c) and the definitions it follows that

*.(«) =  (Aym) (s).
The properties (a) and (b) imply

i - 1
=  1

a com-for any n in N, wherefrom via Lemma 1 we conclude that A{C) isn't 
pletely regular cone.

14. The integral operator A constructed in 13 can be indefinitely approxima- 
ted in the norm topology by positive integral operators of completely regular type. 

We refer for the notations to the preceeding point. Consider the function

K m{s, 0 =  £  K(s, t)
n =  1

and let the operator Am be defined by the relation
i

(A my)(s) =  J K m(s, t)y(t)dt. ■ '
0

From the properties (i) and (iii) of k„ we have for any y in C
i

0 < (Ay) (s) -  (Amy )(s )=   ̂ (K(s, t) -  K m(s, t))y(t)dt =
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=  ( i  E  *.(®. <)W *  *  -  *»+ ')2\y®dt *  M  max (a‘ “  a-+,)i-
J V»»=»"+i ' n>m+l o

and hence |M — /l J  < max (fl, -r- a„+i)a
n>m +1

wherefrom A converges in the norm to A when m e  oo.
We have" to check that Am is for any m of completely regular type. We 

observe first that for any y in C the function Amy attains its local maxima 
at the points at + a ...... ,am +  ««+»• Indeed. suppose that s is m the interval
[2a„ 2a,+1] O' =  1. • • -  »»)• Then by the Pr°Perty W of k>’

1 *
(Amy)(s) =  f Km[s, t)y(t)dt =   ̂k,(s, t)y{t)dt, (s «  [2a,, 2ai+ l]).

S o ,

Now, by the property (ii) of kt,
i i '
 ̂k,(s, t)y{t) dt < J k,[a, +  fly+i, t)y{t) dt =  (A y) (a, +  ty+i).

that is, for s in [2a,, 2aj+i],

Wmy){s) < (A„y)(a, ,-f a,+i). (7)

Consider now an arbitrary sequence (z,) in Am(C) with the property that 
||z,|| > d for some positive d and for any i. We have

zt =  Amy., i e  N,

for some y( in C. According to the property (i) of k, it follows that z,(s) =  0 
for s in [0, 1]'\[2«1, 2am+)], By the relation (7) we have that the maximum 
of z must be attained on some point a, +  aj+u J  =  1, . . m. That is, since 
IWI > d., there exists at least a ;(1 < j  m) so to have

• ‘ • ! . . i. ;
z,(aj +  aJ+1) > d.

Because j  can have a finite number of values, it follows that there exists an 
index h (1 < h < m) and a subserquence (;uzf-) of (z,) such that

for any l in N. This means that

z«',(ak +  <*a+i) > rdf

and hence the set

S  zi : nj=i
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cannot be norm bounded. From Lemma 1 we have then that A m(C) is a com-

|5  j ] ic operator A constructed in 13 is of regular type. We have to show 
in accordance with Lemma 1, that if (*,) is a sequence in A(C) with the pro­
perty that there exists a positive A such that ||z,|| > d for any t, then the
set

: »  e  N| , (8)

cannot be ^l(C)-order bounded (by any element in A (C)).
Let a be the limit of the sequence (a,). Then K{2a, t) =  0 for any t in 

[0, 1]. Hence z(2a) =  0 for any z in A(C). Assume that z is an element in 
A(C) which is a C-order bound for the set (8). This means that

¿ z , ( s )  < z(s), s s  [0, 1], «  «  N.
i — 1

Since z is continuous, z(a} +  ffy+i) -> z(2a) =  0. Assume that h e  N has the 
property that z(af +  rt;+1) <  dj2 for any j  ^ h. Since zt(s) ^ z(s) for any i  and 
since \\z(\\ ^ d, it follows that the maximum of any clement z( must be attained 
at a point s <  ah +  ah +\. According the reasonings in the point 14, an s with 
this property must be one of the points af +  aj+i for j  ^ h. Hence we get a 
contradiction as in the above point with the norm boundendess of the set (8) 
which follows from the C-order boundendess of it. Now, if the set-(8) would 
be /l(C)-order bounded by some element in A{C), then it would be also C-or­
der bounded by the same element. But this contradicts, as we have seen above, 
the hypothesis that ||£:J| ^ d for any i. Thus A(C) must be regular.

16. Example of a positive integral operator in C [0, 1] with continuous kernel, 
which isn't of regular type.

We shall use the constructions in the example 13, restricting the terms fo the 
sequence {at) to satisfy 1/4 <  a{ <  1/2, i e  N. Let be a0 =  1/4 and put

k0(sf t) == max {0, (<a0 — ax)2 — (t — a0 — ax)2}
Consider also the function

y0(t) =  max {0, c0((a0 -  ax)2 -  (t -  a0 ^  ax)2)} t
where c0 is given by (6) with n =  0.

The function

is continuous

^ (s , t) =  £  k,(s, t)
n =  0

and non-negative and have the property that

$A*(s, t) y0(t) dt =  1 
0

for any s in [0, 1].
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The elements

,„ (S ) =  J/P(s, t)y.(t)dt, ft e  N 
0

are of the norm

us denote by f(s) 
rence

1 and have the property that j 

the function identically 1 on [0,

£  2» =  1 for any m in N. Let

1], and let consider the diffe-

m

W„(s) =  c(s) — Y j z«(s)> Ml e 
« = 1

This is for any m a non-negative function of norm < 1.
Consider the sequence (£>,), where bt =  at — 1/4, i <= N, and put

A.(s, t) =  «,($) max {&„ — b„+i)2 — (t — b, — &n+j)2}, «  s  N.

/;. is a non-negative continuous function vanishing outside the strip [0, 1] X 
X [26., 26„+1], satisfying the inequality hn(s, t) < (b„ — 6n+1)2. Hence

K*(s, f) =  £  K(s, t)
» = 1

is a continuous non-negative function. Let

v,(t) =  max {0, c„((6. — &„+,)* — (t — 6. -  6„+I)2)} 

with c9 given by (6). We shall show that the compact operator A defined by
1

(Ay) (s) =  ^ ( s ,  t)y(t)dt, 
o >

where K  =  K1 +  K2 isn’t of regular type.
We observe first that e and the sequence (z„) are in A(C). Further, we have

> “ n+l ,
t) v„(t) it =   ̂ h,(s, t) v„(t) it  =

° 2bn

=  cmum(s) 5 ((6. -  6„+1)2 bn+l)2)2 it  =  M„(S)

by the defimtion of the sequence (6.) and of the numbers c , n <= N 
The obtained relation shows that u. is in A(C) and that the set
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^fC)-order bounded by the element e of A{C). But ||z„|| — 1 for any n in 
S  and invoking Lemma 1 again we conclude that A isn’t o f  regular type.

17. Example of a linear, positive and compact operator in c that transforms 
a completely regular cone in a cone that isn’t completely regular.

Denote by c the space of convergent sequences of real numbers, endowed 
with the usual norm. Let C be the cone of the sequences in c with non-nega­
tive terms The subcome Cx in C of the nondecreasing sequences is completely 
regular. Indeed, if y is in Cx, y =  (y‘), /  «  R, then ||y|| =  lim y . Accordingly, 
for y, and y2 in Cl we have ||yx + y 2|| =  Ibxll +  |(y2|| and hence there cannot 
exist any sequence (y() of elements in C, such that ||y,|| > d for some positive

d and any i, for which j ^ y , : n e  n | is a norm bounded set. That is, Cx is

completely regular by Lemma 1.
Let us consider the infinite matrix of real numbers denoted by A ,

A =  (#!)•)»,;«1,2,... » aij == 2“* Si

with standing for the Kronecker symbol. I f  we define Ay for some y in c 
as to be the multiplication of A by the (column) vector y , then A can be 
interpreted as a linear operator in c. It  is straightforward to see that A is com­
pact.

Define the sequence (y,) of the elements in the completely regular cone 
Cx by putting

% =  (0, 0, 2-, 2", . . . )
n — 1 times

Then

Ayn Zn (¿tit Znr * • •>

where z„ =  2 y ", that is,

*. =  (0> • 0, 2°, 2-\ 2-2.........).
n — 1 times

We have \\Ay,\\ =  ||z.|| =  1 and

\\Ay! +  Ay2+  . . .  +  Ayn|| <  2

for any n in N. That is, A ( C isn’t completely regular by Lemma 1.

3. The subdifferentiability of some Hammerstein type operators. A  totally 
ordered subset of the ordered vector space Y  is said to be a chain. The space 
l  is said to be chain complete if any chain that is bounded from below (from 
above) has an mfimum (a supremum) in Y. I f  Y  is a regular space ordered 
y a c osed cone, then the limit of any monotonically decreasing (increasing) 

sequence is also the infimum (supremum) of this sequence (see II.3.2 in T8 f)
position^2 ndf 7 i w w h0W (see f?ruexample the reasoning in the proof of Pro- 
Ft ™  £ 1 *J7^’ t^at a space Wlth thls Property is chain complete. Thus for 

e have the conditions used in [5] in order to prove the existence of the
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subgradients for convex mappings. Ths operator F  from the vector space X  
to the ordered vector space (Y, <) is said to be convex if

F(txi +  (1 -r t)xt) < tF(xl) +  (1 -  t)F{x2)

for any x* and in X and any t in [0, 1]. The linear operator A from X  to Y  
is said to be a subgradient of F  at x if

F(x  +  « )  — F(x) > Au

for any u in X.
Suppose that X  and Y  are B-spaces and that Y  is ordered by a closed, nor­

mal cone with nonempty interior. Then if F  is a continuous convex operator 
from X  to Y, then from the existence of a subgradient of F, it follows its continuity. 
There exist examples (see e.g. [4]) showing that even for rather nice convex 
operators there are points in the domain of them at which no subgradient exists. 
We shall use in this paragraph the results we have estabilished in order to give 
some sufficient conditions for the existence of subgradients. First of all we prove 
the following preparatory result:

18. Lemma. The closure of any completely regular cone is completely regular 
too.

Proof. Assume that C is completely regular and C isn't. Then there exist 
a d >  0 and a sequence (y{) in C with the property that ||y,|| ^ d for any ir

so to : n e  ft! be a norm bounded set (Lemma 1). Suppose that E *i = 1
^ a for any n. Let zt be elements in C which satisfy the conditions \\z{\\ 
^ dj2 and \\zf — y , |] <  2_< for any i. Then

and hence

E *t = i

n

< L  lb’< — 2<ll <  1

n n n » i

1 = 1

/A

* = l
— E *I = l + ¿ 3 \

for an}' n. That is, the set VF^z, : n g  N is norm bounded. Thus we have get
ll = 1

a contradiction via Lemma 1 with the hypothesis that C is a completely regular 
cone. Q.E.D.

19. Proposition. Let Y be a B-space ordered by a closed normal cone C 
With nonanpty interior and let F  be a continuous convex mapping from the B-space 
X to Y. I f  A is a positive operator in Y of completely regular type, then the abstract 
Hammerstein operator AF has continuous subgradients at any point of X.

Proof. From Lemma 18, A{C) will be a closed completely regular cone. The 
operator AF will be convex with respect to the ^4(C)-ordering in Y  and hence it 
will have A (C)-subgradients in any point of X. Since A (C) (2 these subgradients 
will be C-subgradients too. Hence they will, be continuous operators by our 
comments at the beginning of this paragraph. Q.E.D.
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20. C o r o l l a r y . Let the space C[0, 1 ] be ordered by the cone of non-nega­
tive functions and let F  be a continuous convex operator acting in it. Consider the 
Hammer stein operator defined by

i

G(x)(s) =  ^F(x(t)) K(s, dt), 
o

•where the kernel K  satisfies the conditions in 12. Then G has continuous subgra­
dients in each point of C[0, 1].

Proof. The positive cone in C[0, 1] is closed, normal and has nonempty 
interior. The linear operator defined by - :,

i '' :''

(Ay)(s) =  J;y(Ws, dt)
0

is of completely regular type by 12. Now, G =  AF  and hence we are in the con­
ditions of Proposition 19. Q.E.D.
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OPERATORI L IN IA R I CE TRANSFO RM Ă U N  CON NO RM AL ÎN  CO NURI
COMPLET R E G U LA R E

. ( R e z u m a t )

în lucrare sînt studiaţi operatorii liniari şi continui care transformă un con normal în conuri 
complet regulare. Se dau condiţii suficiente pentru ca un operator liniar şi continuu din spaţiul func­
ţiilor continue definite pe un interval compact de pe axa reală, să aibă această proprietate. Se 
construiesc operatori liniari şi compacţi definiţi în acest spaţiu, care nu transformă conul funcţiilor 
pozitive într-un con regular.


