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„  1 *•„« nf the thermal problem, a) The problem equations. I * t  us

i Fr :r » :  t - s - » fwa' * * * ttomai ».»considered a visco ^  (tube) 0f radius R and very long lenght
unsteady ow in ^  the initial moment t =  0 the fluid is at rest and is

s„wL«aTma pr«su« g«dient <*. -  *-)/i *• is the Trcss“e » «*
subjected to P is the pressure of the fluid m circular section
cro.sechon a - 0 and A <  ̂  ^  *  is assumed^ also that 7 »  is the

temperature of the fluid at the moment t =  0 and that T a is the temperature 
of the duct Suppose that the flow, which is produced in these conditions, is 
unsteady asymmetrical (straight lines). The thermal conductivity of the fluid 
is not neglected. In the domain of the flow, let us now introduce the cylin­
drical coordinates (r, z, <p) where r is the radial coordinate and <p is the polar 
angle (fig. 1). Then, the velocity and temperature field in the fluid is repre­
sented by the scalar functions v.(r, t) and T(r, t) where t is time.

The momentum and energy equations (Poiseuille flow) are deduced from 
the equations of the Navier-Stokes type in the form [1], [3]

o 0«, =  _  3̂  , ja A [ r 3M
St Sz r dr [ drJ
ST ¡Svtyt . X 8 ( 8 T \

pc' *  =  K * ) + 7 7 , N

a>

(2)

Fig. 1.

where the notations are in en
S h a S ^ 011 (a meaŝ ^ St h e W ; th!  term represents the
viscosity anH friction) u aaA i Produced by the dissipation of the

*  “ d ‘Attmal conductivity T i  ,L*?  constant coefficients of thedensity and c9 — the specific heat-
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We can now make the following transformations for the independent varia­
bles and functions

T V* T Ty  =  — , T == —  , U =  ----
R pÄ* / dp\ Ä»

V. dz ) 4\l

__ q ,r -  to  ,

and we introduce the notations (cr — Prandth number)
&(dpidzy77* — ^ ^ --  , O =  --

16 (1* c,('r„ -  T<»>) X -  ■ -  •

Then, the equations (1) —(2) take the form

au . , 1  ̂ / am , , ~
T- =  4 +  -  -  Ly — . (y, T) e  Q 
ct y 8y \ dy)

30 (8U\a . 1 1 d (  36\ , , „
* “ " ( * ) + 7 }  » ( * * ) '  ^ m Q  ;

0) =  0, £7(0, t) =  finite (0, t) =  O) , U( 1, t) =  0 

(0 <  y < 1 ; t >  0)

6(y, 0) =  0, 6(0, t )  =  finite g  (0, t ) =  O ), 0(1, t ) =  1 

(0 < y  <  1 ; t >  0) ;  Q =  (0, 1 ) x  (0, tJ

(3)

(4)

(5)

(6)

(7)

For this problem we seek the solutions £7, 0 e= (^ (Q ) of which derivatives 
d/dy =  0 for y =  0 — by this condition the discontinuity in these equations is 
eliminated — and which, of course, must verify the boundary condition and 
the symmetry condition (6) —(7 ).

Let us consider the set of the functions

5 =  {U, 0 U, 6 ^ C2-’ (fi), U and 0 verifies (6) -  (7)}

In set S, [5], [4], the motion equation has the exact solution ? »

U{y, t ) =  1 - y
«=̂ i

Jo(«ny) c 
«Î /iK)

‘■T . (8)

where /* is the Bessel function of the zero order and the first kind (J0(ct) =  0):

ys ( - 1)* ( ». y l2*+»
t=0 k ! (k +  P) ! I 2 j  '

p =  0, 1 , 2, (9)

2 . The exact solution of the energy equation. The energy equation, (5), 
is linear and nonhomogeneous under a nonhomogeneous boundary condition. 
For solving this problem we seek the solution in the form 6 = 0* +  6j, where 
'o verifies the homogeneous equation subjected to nonhomogeneous conditions 
(given in this problem) and 6j verifies the nonhomogeneous equation under
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t f j  /tu be the linear operator from the energy equa- 

the R a t io n  » e  havetion; thus, for the verrnca

¿(«j = d(9.) + 4(*̂  -&• *> '• e(y‘T) _ UJ
ei.y,o) -  8„(y. °) + = .9”(1; t| + i ‘<1’ T) '

a) t *  w ? T - o ̂

oi tte  “ s

Then, we have the problem

V(y, 0) =  -1 , V{\, r) =  0; (K(0, r) =  finite) 

We use the separation method of the variables by choosing

V(y, x )= Y (y )T (x )

and we obtain the differential system

dT  .  j— =  — Or CL U X  
T  ,

. *L + l dS + ,v  = odyt y dy.

where a is an unknown constant value. The solutions of these equations are

' T(t) =  C0e-«*«, Y(y) =  C J 0{ay) +  C2N 0(<x.y)

where C0, Cx and C2 are arbitrary integration constants and J 0, N o ar.e 
functions of zero order and I st and 2nd kind (the equation of the function i(y ) 
is just the Bessel equation of n =  0 order).

The general solution has the following form

V(y, t) =  C0e-“ ‘T [C J 0(ay) +  C2N 0(*y) ] (U)

It  is known, [4], that the Neumann function N„(x) -*■ —oo when x -*• 0. Con­
sequently, in order to have a finite solution, imposed by the physical problem 
(17), we take Ct =  0. , ,

The boundary condition on the wall of the duct V (l, t) =  0 provides the 
equation

•' |/o(a) =  Qw ;j : > rl\

2 e th4 dgênva ïesÎf Pn S1ÜT® roots of this' equation which at the same time
values theg eiKemfunrtioSeSSe .S ° rdinarÿ ^ r e n t i a l  operator'. To thesse eigen- 

tne eigenfunctions system corresponds M *.y ), n =  1 , 2 . 3 , ' . . .
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Consequently, the problem (10) has the particular solutions 6f  : the form (B. 
are arbitrary constants)

Vn(y, t) =  BKe -aa'\ J 0{^y ),. n = 1 , 2 , 3, . . .

■phe linear problem ( 10) has the solution

V(y, T) =f X) /oi?» y) (ir)n = I ' ' ‘ ‘ '

in which the coefficients B, must be determined. \ •/ ,
Jjet us impose the initial condition V (y, 0) =  — 1 , and then we obtain r.

- 1  = E B J » ( « j ) 'n — 1

that is, the Fourier-Bessel series of the function f(y ) =  —1. In order to deter­
mine the Bt constants we use the orthogonality property on [0, 1] with the 
weight y of Bessel's function. We obtain

1 co 1
-  $ 7o(«. y) y h  =  £  b * j  7o(«- y) 7o(*. y)yfy =

0 W_1 0
1

=  L / o K ^ )]2̂  =  {  5 ,,[/ i(aJ ]* ( 12)
0

if we use the orthogonality property and the known formula from the theory1 
of the Bessel functions

R

\r[Jo («mr )]d r  =  ? [J '0(*mR)]* (13)
0

(a. — eigenvalues, J 0(<*m r) — eigenfunctions)

We now calculate the integral from the left side of the equality (13). If we 
introduce the Bessel function J 0, in accordance with (9) and then integrate, 
we obtain

It is also 
values

2k + \ 1 

«m -  7x(«J

known that J'0(x) =  Then, from (12) we obtain the

'One

>' B
2 . \

can now write, by means of (117, the solution V{yf t ).
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The solution of the homogeneous energy equation under n0nh 

boundary conditions is ODlogene0Us

4 D] 1 /fcG OV/*>nr**" ■ S' ^ l  ¿J . . • w- - ^
«tous boundary c o equation. The values a are the roots^f 
rator from • • -  / * M -  eigenfunc-
tte aquation / («) tteeigenvalnes The fonctions 6, and g are deve-
tions corresponding wiW tn J funetions (generalized Fourier senes), introdu­
c e d  in a senes oi wWch forms an orthogonal system of func-

^a'svstmr^oF linear Independent functions ; a compete system). _ _ _  
“  l i t  »  introduce the Fourier-Bessel e x p iio n s  by settmg

00 w00
Gib's *) = £  C-W /o(«n y)
' \ \ ‘ ' * •

g(y. f ) =  £  y)» = 1

' (Gib» 0) .=  0, 0x( 1 , t) =  0)

(15)

(16) 

(16')
' ’(-Gib» G). =  G, Gi(l, t) =  U) \-v,

where the Fourier coefficients c„(r) and dn(r) are the unknown functions which
are to be - determined. .< ,

The generalized Fourier expansions (15)— (16) are substituted in energy
equation (5), which, reduces to the identity

Y^c’JoW.y) = £<*» JoK y) +  « | Ç C"7^ +  ^
dïA

with
d*Jo(*ny) ±  d j0(an y) 

dy* y dy
+  a?» Jo(an y) “  ®

This identity is further reduced to

£  ( $  ~  <*• +  * c* a») / •(«. y ) s  0
N * M #

From here the resulting nonhomogeneous ordinary equations arc

K  M
¿T +  «a*c.(T )^d.(T), «  =  1,2,3, ... 

c,(0) == 0, »  =  1,2,3, k..

(17)
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whose solutions are
i '

c„(t) =  d.{t) dt
0

The solution of the nonhomogeneous energy equation (under homogeneous con­
ditions) can be written in the following form

T
0i (y. t) =  £  (  dn[t) / ,(« . y) dt ' (18)

- ' o

Now, we must calculate the Fourier coefficients d„(t). In order to do this, we set
00

y g(y, t)Jo (* .y ) =  £  ¿.W  J <,(<*» y) /o(*- y)yn => 1

From here, by integrating on [0, 1], we find
i i
j  giy> t) /o(a. y) y dy =  dm{t) j  \J0(a . y) ]* y dy =
0 0

=  \  à jy ) [7 i(«J  ?  =  \  dm(r) [Ji(ccm) ]*

if we take into account the orthogonal Bessel functions and formula (13). We 
obtain the formulas

l

=  7 7 7 -77, [  g(s> T) 7o(«. s) sds, n =  1 , 2 , 3, . . .C/i («,)]* J0
The solution of the problem, from (18), is

T 1

0i(>'» t ) =  j   ̂G ŷ> s> T ~  ^ ^ dt ( 19)
o 0

if we introduce Green's function :

Gfy, S. T -  <) =  E  T r f -  / .(*. y) JA*. s) « ‘ “ !M
<*=1 U

(20)

c) The solution of the energy equation. The solution of the energy equation 
(5) under initial and boundary conditions (7) is

0(y, T) =  OoOy. t) +  0i(y, t) =  1 -  2 ]£  e T — *f\  +  (  (  G(y, s, t - 1) g(s, t) ds dt.
■~i «./1(«,) JJoo

(21)
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where:T  The Green function G(y, s. t -  <) for the Bessel operator'has the exp,«. 

sio° ^°The function g(y. «  has « “  « I ,ressi°n
, (SU\*

. . . .  v , -  t e ’ O =  " • [ » )  . : - ■<
FT i T • •••i /f> ** ,

with m given in (3) and U given in (8)
_  fhe coefficients «. are the positive roots (found in Tables) of the

" r.M  =. 0
equation

(ax =  2,4048; a* =  5,5201; a3 =  8,6537; a4 — 11,7915 ; a8 — 14,9309; . . . )  (22)

— Jo and Jx are the Bessel functions of the first kind and of the zero 
and first order, given in (9). . r- ' i

(Received October 12, 1981)
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TRANSFERUL DE CĂLDURĂ ÎN  MIŞCAR'EA N E S T A Ţ IO N A R Ă  A U N U I FLUID  

VÎSCOS PRIN CONDUCTE C ILINDRICE  C IR C U LA R E  

( R e z u m  a t)

Se presupune că mişcarea nestaţionară în conductă este axialsimetrică pe traiectorii rectilinii 
(t =  0) fluidul este în repaos şi este supus la un gradient de presiune. 

Conductibihtatea termică a fluidului şi disipaţia nu sînt neglijabile dar termenul de convecţie este 
reznlvftta n eCuâ a Ecuaţia neomogenă a energiei are condiţii la limită neomogene şi es e
rezolvată cn ajutorul funcţiilor Bessel şi a funcţiei Grecn. . . .
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