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NSFER IN A VISCOUS UNSTEADY FLOW THROUGy

THE HEAT TRA CIRCULAR DUCTS

DOINA BRADEANU

1. Formulation of the thermal Pl‘Oblt'fn- a). The problem equatio?zs. Let s
considered a viscous incompressible fluid, w1th. thermal conductivity 3 in
unsteady flow inside a circular cylinder (tube) of radius R and very long lenght
L. It is assumed that at the initial moment ¢ = 0 the f'luld s at rest anq ig
subjected to a pressure gradient (o — pu)/L where po 1s the pressure in the
cross section z = 0 and p, < b is the pressure of the fluid in cxrculgr section
z = L (here, Oz is the axis of the duct). It is assu1ned~also that 7O is the
temperature of the fluid at the moment 7 = 0 and that T, is the temperature
of the duct. Suppose that the flow, which is produced in these conditions, is
unsteady, axisymmetrical (straight lines). The thermal conductivity of the fluid
is not neglected. In the domain of the flow, let us now introduce the cylin-
drical coordinates (7, z, ¢) where 7 is the radial coordinate and ¢ is the polar
angle (iig. 1). Then, the velocity and temperature field in the fluid is repre-
sented by the scalar functions v,(r,#) and T(r, t) where ¢ is time.

The momentum and energy equations (Poiseuille flow) are deduced from
the equations of the Navier-Stokes type in the form [1], [3]

e __ 9%, w 9 U 1}
ot az+r ar(rar) O

oT ), » o[, oT 9
¢, — = ] AR Pl )
P'at y'(ar)Jrr ar[r ay) (

r/' ly)
/.

I\
Rl Y Pirz ,Y) vy
¢/
Po 0 1 =L 2-

Fig. 1.

where the notations are i ; o
st fopatons & in the usual form; the term p(dv,/dr)? represents t

measure of the heat produced by the dissipation of the

mechanical energy by fricti pa ,
viscosity and thfxymalycof:;fxg?) b and A are the constant coefficients of th

vity, p — the density and ¢, — the specific heat-
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. We can now make the following transformations for the independent varia-
ples and functions o : .

R 4 ut Ve . L T-Tw.
=, 1= —, U= L2 , 0 =2 —
YER' TR 2| B o T, — T® ®)
: - 3:) 4
and we introduce the notations (¢ — Prandth number)
‘ RU@pIOS o _weye .
le’c,’(’f,,—-T‘("))" T oA s
Then, the equations (1)—(2) take the form
au 1 0 ( aU , .
—_—= 4 — — — E d
™ +2 5 (y %)’ (y,7) =Q (4)
B _ (VP12 oy a0
o m(éy)-l-oxayyay)'(y'?) G,Q 5 ©)
Uly, 0) = 0, U(0, ) = finite (‘;J 0, %) = 0) , Ul 1) =0 .. (8)
y
O<y<1;7t>0)
8(y, 0) = 0, 6(0, ©) = finite (“’9_" 0, 7) = o]', 8(1,7) = 1 @)
y

O<y<l;7>0); Q=(0,1) x(0,7)

For this problem we seek the solutions U, 8 € C21(Q) of which derivatives
dldy = 0 for y = 0 — by this condition the discontinuity in these equations is
climinated — and which, of course, must verify the boundary condition -and
the symmetry condition (6)—(7).

Let us consider the set of the functions

S={U,0U, 8 <C>Q),U and 6 verifies (6) — (7)}

In set S, [5], [4], the motion cquation has the exact solution & .

U(y,..‘r) = 1 _y2_82 Jo(a,, }') e—a"”-'rl (8)

=1 af jl(an)

where jo is the Bessel function of the zero order and the first kind (Jo(«) = 0) :

® :
=5 (=D (ay s =012 ... ©
v-:-];(“-.’)’) .kE-ohl(k-l-P)l( 2) s ! ? 0:1! AR .'.
. ..2. The exaet solution of the energy equation. The energy equation, (5),
1s linear and nonhomogeneous under a nonhomogeneous boundary condition.
For solving this problem we seek the solution in the form 8 =8, + 6,, where
o Verifies the homogeneous equation subjected to nonhomogeneous gondxtxons
given in this problem) and 8, verifies the nonhomogeneous equation under
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s et the linear operator from the‘energy o
neous conditions. Let 4(8) be 3 “theenergy oo,
?i((’)rx??g:hus, for the verification of the equation we have IR Qua

v : g _9U)e
A(8) ‘—;"A(eo) -+ A(91) =:g(y, 1) gy, 7y =m ggj
By, 0) = Bu(, 0) + 83 0) =0, 8(1, %) = B(L, ) + 01, 7) = 1
energy équation “under’ nonhomogeneous ‘conditions. Let

homogeneous energy equation under nonhomoge.
d let the change of the functions be

a) The homogeneoks
6,(v, 7) be the solution.of the
peous boundary conditions an:

V==01t—1; (&= 1/0)

Then, we have the problem . . .

LG G 14
Z o a(ay’ + v ayJ (10)

Viy, 0) = —1, V(1,7) = 0; (V(0, v) = finite)
We use the separation method of the variables by choosing
Viy,7) =Y()T(x)

and we obtain the differential system

aT

— = —otadr
ay 1 dY
—+—-——=+aY=0
dyt -y dy.

i !

where a is an unknown constant value. The solutions of these equations are

« T(x) = Coe—otr, Y(y) =CyJ o(dy) + CzN o(xy)

where C,, C; and C, are arbitrary i i
e C,, y integration constants and J, N, are Bessel
functions of zero order and 1* and 2" kind (the equation of {ﬁe fuonction Y()
1s Just the Bessel equation of # = 0 order).

The general solution has the following form

V(9. %) = Coe=s [C, T o(ay) + CoNolay)] (1

i:qﬁefggrw?& gﬂgrﬂiﬁt; he Neumann function N(x) —» —oo when x — 0. Con-
(17), we take C— 0 ave a ﬁmf;e solution, imposed by the physical problem
The boundary conditior TR o ) )
equation 1y condition on the wall of the duct V(1,t) =0 provides the
. . ciaowiy 'j’() R NI e, ERR
. - T 0 3 .='0:u'v - “‘ R . .
Let @y a, ... cot S = R e e
are the ?igén;/atlﬁé: hgf I;;)SItlv'e_ Toots ‘of ‘this’equation which at the same D¢
-t dessel’s ordm?,ry differential OpE:rator' To thesse eigen-

DS system corresponds Fo(a,y), # = 1,2 3, " -
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onsequently, £he problem (10)- has’ the ‘particular solutxons of the form (B
are arbitrary constants) .

,. V0, 7) = B Jo(m3)n=1,2,3, .
The lmear problem ( 10) has the solutlon )

ch 9 = EBe‘"'*Jooz y) B ar)

'[_
A PN . Doy
T RN AR I

jn which the coefflclents B must be determmed \ o [ e, et
Let us impose the initial condition V(y, 0) = —l and then we obtam

—I—EB]o(a y)

that is, the Fourier-Bessel series of the functxon f(y) ='—1. In order to deter-
mine the B, constants we use the orthogonality property on [0, 1] with the
weight y of Bessel’s function. We obtain

—(Jola)ydy =35 B.{ Jolwa 3) Jolen )3y =
= B.{ o)y dy = 3 Bu[Ji(w) I (12)

if we use the orthogonality property and the known formula from the theory:
of the Bessel functions

{rUo@ndr = Usfew R (13)

(x. — eigenvalues, J,(«,7) — eigenfunctions)

We now calculate the integral from the left side of the equality (13). If we
introduce the Bessel function Jo, in accordance with (9) and then integrate,

we obtain

1 o f

i (— 1)k 2k+l _1_ _1
OSJo(a..y yly=3 =t (3 ) - L(a.)

f&uis also known that Jj(x) = —J,(»), [4]., Ihep, from (12) we obtain the
ues \ A n (1<

- 2.3
S 1{2m)
‘One can now write, by means of :(117), the solution V(y, ).

1 B"=
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The solution of the pomogeneous €ergy equation under nonhomogencqy,
e 50 ) -

ditions 15
boundary €OV o e Je)
. S Ll R4
eo(y» T) =1- 2;;‘6 _“v]x('an) (14)

(a2, — @r€ the positive roots of the equation J g(d) = 0; see (22))

. b) The solution of the nonhomogeneois energy 6‘1’;“”0.” S“beCth to homoge-
neous boundary conditions. Let %, = L2 ... ,Fﬁ t Ve;hellegsenva ues t%f the ope-
rator from the homogeneous ezlerg)}’je?:;t)lon-_‘ ]:!(a"y) dnb:r:he ziéggfts of

1 = - ol %4 y' L) yoeo s n ,"" unc-
the equat;ono{ ((ﬁzl; “(,)i'tﬁ;e]giggwalﬁes %.. The functions 0, and g are deve-
;nonsd ci%ﬂasgeries of Joles) eigenfunetions (generalized Fourier series), introdu-
c?e%e bv the homogeneous equation, which forms an orthogonal system of func-
tions ’(a system of linear indepepdent_functlons; a complete system).

Iet us. introduce the Fourier-Bessel expansions Dby setting T
Ba(y, %) = 25 &ale) Jolea y) (15)

g, ®) = 2 alr) Joloe 9) (16)

Bp0 =0  &LY9=0 (16)

where the Fourier coefficients c,(;r) and d,(x) are the unknown functions which
are to be-determined. : :

The generalized Fourier expansions (155-—(16) are substituted in energy
equation (5), which, reduces to the identity

T e Tolen 3) = 2 da Jola ) + a[‘Zc,‘@ LIv, :i_f_)
» n m dy? y = dy
with

Jolewy) =0

o291 delany) | 2
Py .+.y, ” ~ + o

This identity is further reduced to
. - VE -d_c_-' _ d . 2 ».
~\ ds n+ac-¢”)]0(aly)50
From here the resulting nbnhom‘og'eneoﬁs‘ or'dinary.éaquatious arc

dcn (") -
=2 taael) =d,(), =123, ... (17)

a0 =0, =123, ...
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whose solutions are
]

.
) !

ca(x) g e;;“:‘ §'e‘4= ‘d, () dé |

The solution of the nonhomogeneous ‘energy equation (under homogeneous con-
ditions) can be written in the following form

T

0y, ©) = 3 (74,00 Jolw ) &t (18)
n=1 o
Now, we must calculate the Fourier coefficients d,(f). In order to do this, we set

$80 A ole) = 3o 48) Tulo3) Jolaa 3y

From here, by integrating on [0, 1], we find
1 1
[ 80, %) Jo(ou) y dy = dufe) { Uslaay) Py dy =
/] [

4u(s) Us(@) P = 3 dua(s) Ua(on)

if we take into account the orthogonal Bessel functions and formula (13). We
obtain the formulas

1
2

1

Sg(s. ) Jolow ) sds, n=1,23, ...

[}

The solution of the problem, from (18), is

_ 2
(Ji(=n)]*

d,(v)

t1
0,(y, ) = 5 SG(y, s, T — t)g(s, £) dsdt (19)

00

if we introduce Green’s function :
Gy, 8,1 — 1) = 30 —=— Jolow ) Jo{ans) €49 (20)

s=t [Ji(ad)]?

¢) The solution of the energy equation. The solution of the energy equation
(5) under initial and boundary conditions (7) is

Al ayJa(xy)

© 1. T 1
80y, 7) =04y, 7) +0,(y,v) =1 —2 3 ¢ 7 T Lolwd) SS Gy, s, ©—£) g(s, £) ds ds.
00

(21)



62

where . — he Bessel ator has th. . -
— The Green function G(y,' 5% t.):;f‘or the Bessel operator has the Xpres.

sion (_20’)1;he function g(¥, t) has the é"xpression
t)=m ?E}’

’ P oo s o

SFuE
; .ven in (3) and U given in (8) .
mthl” '%llre coefﬁ(cio)ents a, are the positive I°°t5( (found in Tables) of the equatiop

T Telw =0
(o0 = 2,4048; 0 =55201; oy =8,6537; ¢y =117915; s =14,9309; ...) (a9
— Jo and J, are the Bessel functions of the first kind and of the zero

and first order, given ini(9). .. . "¢

( Received Octobey 12, 1981)
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TRANSFERUL DE CALDURA IN MISCAREA NESTATIONARA A UNUI FLUID
ViSCOS PRIN CONDUCTE CILINDRICE CIRCULARE
‘(Rezumat)

. _ Se presupune C.i‘n‘ﬁsca.tea nestafionar in conducti este axialsimetrici pe traiectorii rcctjlinii
%1_ c;x ::z_briliiomentul initial (t = 0) fluidul este in repaos §i este supus la un gradient de presiunc.
e.l(i)::i:at djntm:ea termica .a,ﬂludul“_i §i disipatia nu sint neglijabile dar termenul de convecfie es:e
Teatvans ecuafia energiei. Fcuatia neomogend a energiei are conditii la limitd ncomogene §t € €

vatd cu ajutorul functiilor Bessel si a funcfiei Green, . . ' o

iy e



