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Curgerea pe suprafaţa unei picâtun şi mişcarea de translaţie a acestuia, datorate unor gradienţi 
de tensiune superficială ce apar pe suprafaţa ei. sunt investigate teoretic pentru o picătură 
nedeformabilă, iniţial în repaus
Repartiţia surfactantului pe suprafaţa picăturii este dată prin legi particulare 
Din punct de vedere matematic se rezolvă sistemul Stokes-Oscen printr-o metodă de separare 
a variabilelor şi se face un studiu asimptotic al forţei (componentelor normală şl tangenţială) 
ce acţionează asupra picăturii

Abstract. The surface flow and the translational motion of a drop caused by interfacial 

tension gradients are theoretically investigated in the case of an undeformable drop, initially 

at rest (or at zero gravity) The inteifacial tension gradients are induced by injecting the drop 

with surfactant The spreading of the surfactant on the interface is described by a particular 

law A covering degree of the drop by the surfactant it is found out beginning with which the 

drop undei goes an upward translational motion

Introduction A viscous liquid drop immersed in an immiscible liquid undergoes 

complicated motions, when interfacial tension gradients anse on its surface The theoretical
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model reported here considers that

- the drop is underformale and initially at rest,

- an interfacial tension gradient is established by injecting a droplet of surfactant in 

a well-determined point on its surface,

- a real surface flow - Marangom fow - anses on the drop surface, with a distinct 

front, which advances contmously,

- from all possible motions, induced by the surface tension gradients (translation, 

rotation, oscillations, waves on its surface, deformation, fission, etc) we shall take into 

account only the translational motion of the drop,

- the translational velocity varies with the covering degree of the drop by the 

surfactant;

- no surfactant transfer, inside or outside the drop is considered

1. Governing equations. It will be considered an undeformable diop Q, (density p,) 

immersed into an immiscible liquid Q2 (density p2) If the two liquids, have the same density 

p = p, = p2, the drop is called free and is motionless The two liquids inside and outside the 

drop (see Fig 1) are Newtonian, incompressible and viscous having the viscosities p, and p2 

On the physical and chemical aspects of the problem see our previous works [2,8J

On the assumption of undeformability we note the following In the experiments

reported in our works [2, 8] the condition is fulfilled that surface tension at the interface

between drop and ambient liquid is strong enough to keep it approximately spherical against

any deforming effect of viscous forces This condition (see for example Batchelor [1]) reads — » |l' V ,
o a

and expresses that stress due to surface tension should be large, compared with the normal
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Fig 1

stiess due to motion

We must notice that this condition don’t contradict the assertion from [2], "the drop 

behaves like a rigid spheie for small mterfacial tension giadient and large viscosity of the 

drop" First of all the smallness of the term i—Í is given essentially by pa from ( /(14« a,). 

Moreovei, we know only by a qualitative point of view that for large interfacial tension 

gradients and 1 educed viscosity of the drop, it becomes sxrongly deformed and phenomena of 

oscillation or possibly fission may anse
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Due to the viscous interface the more viscous fluid from the drop drives the less 

viscous ambient fluid In [4], the authors state this fact in a suggestive way "high viscosity 

liquids are the victims of the laziness of the high viscosity liquids because they are easy to 

pust around"

Because the drop is initially at rest, we don’t possess a, characteristic velocity U, so 

we can take that U = gj/ap; which permits to consider the Reynolds number Re2 = 1 in the
л

system of equations describing the flow of the ambient fluid (exterior flow) We shall call this
1 C

velocity "viscous" velocity Taking that into account as a characteristic one for the flow inside
, - 1

the drop, we’ll obtain

- Ä r . - J l i
h,

With the two values of viscosity taken from [8], the Reynolds number corresponding to the 

drop phase ranges between 1/80 and 1/40

This observations suggested us to couple Oseen’s and Stokes’ equations, the first one 

for the ambient liquid and the second for the drop liquid Taking Cartesian axes fixed relative 

to the drop and (/ , 0, ip) spherical polar cooidmates, with origin at the centre of the drop, we 

denote by O, the interior of the sphere of radius a centered at origin, and by Q2 the 

complementary space of Q, in R3 (see Fig 1) The dimensions of Q2 are extremely large 

compared with the radius a of Q,

Using subscripts 1 and 2 related to quantities associated with the drop phase and

ambient fluid (liquid) respectively, we denote , by g, - (</r (a, .v,), i -  1,2 the
' ’ < •

1 ^ ,1  ' s '  ‘ ,
components of velocity, by pH), pn the tangential and normal components at stress tensoi 

iespectively, and by a  the interfacial tension; a -  a(0)

The equations governing the flow considered quasisteady (even steady in Q,) and
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axisymmetnc are

' ’ - V/», ■ m q; ' ' • ' (1)

uHOl - --Lvft + Ü lv ’g, in Oj ' , (2)
dZ p  p

' Vq‘~0 in QjUQ,' (1 - 1,2) •' (3>

The following boundary conditions are considered 1

|g2|-*0 , . г - ®  - • (4)
r “

1 |^,| is bounded, r = 0 ' '■ , (5)

' ' 4, ” 4, r - à 1 ' (6)

( Р Л  - >-Д , (7)

( p „ ) ,  -  ( р ггЪ + 1 1  r - e  , ( 8 )

Since the liquid is at rest at infinity we must take condition (4) and because inside the 

velocity must be bounded’ - condition (5) The condition (6) expresses the mutual 

impenetrability of the interface (r “  a) as well aş the continuity of .tangential velocity to the 

surface of the drop This last condition follows from assumption that two immiscible liquids 

can not slip over each other because of viscosity

hi addiuon to these kinematic conditions there are two boundary dynamic conditions

(7) and (8) The first one represents the continuity of tangential stress on crossing the surface 

of drop at any point We added there the term — to express the Marangoni spreading of
Í ' \ ' ‘ 1

the surfactant Indeed, if we consider that the surface tension of the drop is cr0 and if m the 

intersection point of the positive Oz axis (Fig l) with the drop, the inteifacial tension is 

lowered to cqfrr, <- u(1) by injecting a email quantity of a surfactant, an interfacial tension 

diffeience <i0-a, appears This interfacml tension difference produces the spreading of the 

sui factanl on the surface We shall note by B^the angle characterising the position of the front
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of the invaded region In this region (Xösfy and the surface tension vanes at a ,so (0 )sao

The second dynamic condition (S) underlines that at the interface between immiscible 

viscous fluids in motion, the difference between the normal stress at any point of interface 

on the convex side and that on the concave side is the quantity which equals the stress due 

to the surface 2ala, the normal being drawn from the concave to the convex side (the outward 

normal, Fig 1)

As for the pressure we have the following conditions 0, r  -* »  and p, - я,

is finite everywhere within the drop it, and jc2 are respectively hydrostatic pressures within 

the drop and in ambient fluid When the drop is suspended at re3t in an immiscible liquid (p,

= Jtj, p2 = Jt2) they satisfy the well known Laplace’s equation

2o»
Л'~*2

After the start of flow and /a repiesent from the physical point of view 

perturbations fiom я, respectively я2 and they are harmonic functions in fl, respectively ß 2 

Following [7], for example, we introduce stream ftmctions Ф, and Ф2 in order to 

satisfy the equations of continuity (3) by

1 34'n , = u, - - _______ _  , ( “ 1,2
r 1 smö <30

1 0T , ; » 1,2
7sm 0 dr

The system (l)-(8) will now be written in dimensionless form We introduce as a 

length scale the radius a, as a velocity scale the characteristic velocity U = p,/ap and as 

interfacial tension scale the value a0 With these we have the following dimensionless 

quantities

-  r -  Ul -r -  _ ,  U “ _1, Va ‘ U ’ U
, » ” 1, 2,  p p  -  a  ‘ a ” __

P U7  '
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Also we have for dimensionless stream functions
ijj ©

Ф, = __L , ( ~ 1,2
Ua2

hi dimensionless form and using Ф, variables, the equations (l}-(3) become (where the

superscript is dropped)

E 44ll -  0 in ß, (9)

inß,  (10)dz I
where

/. vő „ д‘(•) + suie д ( 1 ő(-)
~ д г г  Г г "aS (UnïïTfT

Now let us consider in tum boundary conditions (4)-(8) To ensure the asymptotic

condition (4) we take

while (6) gives

Ф, -  o(r2) r  —* 00

d V , d ' y , r » 11 во *
~ w ae ’

) аф, a'i'j
r -  1

~ J T " I F ’

(П)

( 12)

(13)

The condition (11 ) shows the fiee streaming relative to the centre of mass of the drop 

It should be noted that the assumption that diop lemains spherical in shape as it 

translates means that

may be ieplaced by

h , =  h , »  0 ,  r “  I

4», = Ч>5 -  о, r -  1

The dynamic condition (7) may be rewritten succesively

tv
f ) r \ 4 г Л 0  dr I r

Mj д"г ^ 1 do------ct- +------•— / ” Пr dB a (ÎQ

(14)

(15)
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or, by virtute of (14), in dimensionless form, reduces to

1 a
Re, ~dr

/ \ 
1 d V d= r

^ эч<2'
r 1 dr V / dr r 3 ùr \ /

l-o. la.
*Ca ■ 0 suffi, r « 1

1 -COS 8
(16)

Here stands for the angle under which the front of surfactant convers the drop, 0 

< 0|S  я, 0 s  Й £ 0yj the function a (0) is defined by

a(0)
1 -C O S0

( l - c o s 8 ) + a , ,  « ( 0) ^ 0 , ,  о ( в 7)  »  a 0 ,

so da/DQ -  sinö ■ (o0 — Oj) / ( 1 -cosGp, and the dimensionless number Ca is a measure for the

íelative importance of capillary forces to viscous forces Co - aa/U\i, To unify the notations

we have to observe that for proposed "viscous" velocity Ca = 1/ÜA2, Oh = щ l\joaap , being

the Olinesorge number [3] and more Ca -  l/We, where We is the Weber number [9]

To be scrupulous, we mention that, as is well known, the surface tension a  usually

depends on the scalar fields in the system (e g the electrical field, the temperature field) as

well as on the concentration of foreign materials on the surface [6] In the present paper we

focus on the variation due to the foreign material given by o(0), in fact о  depending not only

on Ö but on 0̂  a0 and a , i

The normal stress condition (8) gives 

du. dll, 2a

which by (14) m dimensionless form, reads

ДЧ\
. + 2 Сa ■ a , r  » 1

1 Äel/,Jsin0 dr ŐÖ r '1 /-2sinö ár dÖ

The conditions (5) and (11) show that suitable forim 4*, and 4^ are ([7], [10], [9])

4', -  ( a > 1 +ßr4) siifö , r s l

D4< » C(1 cos0) 1 -  e x p . ( 1  -C O S 0 ) ^__ Sil f  0  Г Й 1
r

(17)

(18) 

(19)

Thus there are four constants A, B, C, D to be determined, but five conditions (equations) to 

be satisfied (15), (13), (16), (17) U must be remembered that, the additional boundary
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conditions (15), imposed to keep the drop undeiformable, have replaced the boundary 

condition (12), and they are not one of the conditions (6)-(8) imposed purely by the 

kinematics and dynamics of the problem

2. Results and discussions We must observe the fact that in imposing the condition 

of the tangential stress on the surface of drop, we cannot satisfy the equation (16) exactly (the 

first term on the right hand side), but it can be satiesfied to 0(1) in Ret It means that the 

coupling between extenor flow (the solution of Ossen’s equation) and interior flow (the 

solution of Stokes’equation) is realized only appioximativelly A similar observation is valid 

for the boundary condition lF2 = 0 and for the right hand side of (13),

So, on solving the equations given by (15), (13), (16) we obtain

A
Ca ‘h(a,Qf )
W I +бЩ В * - A ,  С = - 2 Л , D = A (20)

where for the sake of brevity, we have noted _!__= Л (о, e,)1 - eosöy 1
For some values of parameters Reu Ca etc we give in Fig 2 the streamlines for the flow 

within the drop (¥ , = const £ 0) and in the ambient liquid (4'2 ■= const a 0)

We observe that because of the aproximaţivelly imposed boundary conditions (see 

above), the exterior streamlines present a detachment (lIJ2 = 0 for r > 1) from the surface of 

drop As concern the interior streamlines is observed that they "start" only for a 0 > 0, which 

depends on the constants taken into account This fact is explained by the finite dimension 

of the surfactant droplet, injected in the north pole of the diop

The expressions of tangential velocities on the surface of drop as limits of interior and 

exterior flows respectively are
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0f = 90"
(Tj/ cfq = 0 3 131 
Rey = 1/80
Ca ~  2 • IO'1

V\
\ \
V s \

1 I I I I I I I I t I
Fig 2

.1.— .1..__U

V, » -2Лв1пб 

V, -  - A  einö

о < е â е

(« p [- i ( cost) -  1 )

7

+ 1

(2 1)

(22),, О < 0 й 0/

For some values of parameters in Fig 3 are plotted the velocities v/on the eurfaoe of 

the drop corresponding to 0y on x axe The differences between the values of v,and Vj for the 

same 0 are due to the approximative^ imposed boundaiy conditions

For a given Qf  the velocity of front of surfactant become , -

vf  “ -  A sinö/ exp

The pressure p , within the drop is

p. -  2 r  cos0
' Щ

so m the centre of mass of the drop acts only the hydrostatic pressure я, s

With the condition for nomial stress (17), not used in the computation of spectrum of 

flow, and with pu we can determine the value of рг on the surface of the drop, "
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The force acting on the drop may be calculated from'the general expression of force

[6], which gives in this case

b = 2 n a1 Ĵ ö/ J [pr,)2 COS0 - (pr0)2 sin0 jsinö -г/0,

where (j>rr)2 and (рл )2 are the normal and tangential components of the viscous stress tensor- 

corresponding to the exterior flow We have respectively ,

(IK, \

( Pre \

2
-Pi* dr

f * \
1 1 . dUl + J V2

ж 3 0  d r  r

The noimal component of force F  per unit of area, has the following expression
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F  -  2 л Cíi
2 SRe,_  ( 1 - A) - _____ 1__
3 13/te. + 12

( 1 + cos в/  + cos’ 0/ ) +

+ 2jtCí7(Acos6/ - 1 ) ( 1 +«>80^, A

(23 )

Using the asymptotic expansion of the fonction 1/(1 + e) when c o+, for the coefficient 

A with e = Re„ we may have simply an asymptotic representation for F„

Fischer, Hsiao and Wendland in [3] obtain an asymptotic representation for the force 

exerted on a rigid obstacle by the fluid This representation has the form F  e  Aq + Я [Re + 

<9(Re2 In Re'1) as the Reynolds number Re-»0+ and is essentially different to ours by the 

factor In Re'1

From (23) it is observed that the normal (and tangential) component of force acting 

on the drop, depends direct proportionally on Ca

As a final observation, we have to underline that the representation (23) hides the

dependence of Fn on Re  ̂= 1

Tire assumption that the drop is undeformable seem to bè too restrictive.

Re
X 1/20 1/40 1/60 1/80

1/20 165° 169°
-  ч . r' 

171“ 173“

1/10 167° 171° 173° 173*

35/102 169° 173° 174° 175°

3/5 173° 175° 176° }77°

Table 1

In fact there ате some other effects (see Fig 6 from [2]), so we consider that the force 

corresponding to F„ < 0 is consumed for other type of movements except transjation The 

piopulsive (lifting) force, /'„ > 0, responsible for the upward movement of the drop appears
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only when the covenng of the drop with surfactant is greater than nil  However this aspect 

is only in a qualitative agreement with our previous experimental data [8] From Table 1 

results that the smaller the ratio \  is the smaller 0/ for which F„ > 0 will be. So, it is clear 

that, for к -* 0 the obtained values of Qf  beginning with a lifting force appears, tends to those 

obtained experimentally A more dear judgement will be provided considering the shape of 

drop deformable and, of course, the flow unsteady

Concluding Remarks Perhaps, it would be of some interest to take for characteristic 

velocity U the experimental values from our works [2] and [8] That might be the atm of a 

future work

However, the aspect of our results, the spectra of flows inside and outside of the drop, 

the existence of the lifting force, as well as the asymptotic representation of force exerted on 

the drop by ambient liquid due to the variation о  - a ,, are in good qualitative accordance with 

experimental results The question of quantitative accordance remain open from both side 

theoretical and experimental It is very likely that the results presented tn this paper would 

be improved if the differential system (1) - (8) were solved by a numerical method, eg. a 

spectral method This could also make the topic for a fliture work

An asymptotic analysis in the spirit of £5] m the assumption of deformobihty of the 

drop is almost finished There, all the quantities found in this work, stream functions, 

pressures, etc will play the role of the first approximations

However, it seems that only by the use of some nonlinear terms (all possible) in 

vicinities of the surface of the drop inside and outside [5J one could solve some discrepances 

between theory and experiments
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