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Abstract. A thin liquid layer flowing due to gravity and a surface tension gradient is
taken into account. On the liquid/gas interface one of the boundary conditions re;:Iuces
to the fact that the normal stress equ§ls the atmospheric pressure. This is the main
difference between our study and those where the same boundary condition expresses
the fact that the normal stress is prcportional to the curvature. In these, by using the
standard lubrication theory, a fourth-order nonlinear parabolic equation for the fluid
film height is obtained. In ours, by using the same theory, a nonlinear conservation law
with a nonconvex flux function is deduced for the same variable. For this equation a
similarity solution is carried out. It shows that the behaviour of the liquid layer depends
essentially upon the gradient of surface tension and is quite insensitive to the viscosity
of the liquid. " Viscous” and weak formulations for the conservation law are also carried

out. An entropy condition to pick out physically relevant weak solutions is used.

1. Introduction

The thin film theory (lubrication theory) and similarity methods are used to de-
termine the behaviour of the free surface (the liquid / gas interface) of a thin liquid laye.
flowing due to gravity and a gradient of surface tension. This gradient acts on the liquid
/ gas interface (the upper surface of the liquid layer). The surface tension o at each point
of the interface is related to the local surfactant concentration I’ through an empirically
determined equation of state o (I'(z)). The gradient in I', and thus in o, along the inter-
face induces a shear stress at the surface of the underlying liquid, and thus a Marangoni
flow in the substrate. If the liquid substrate is thin, and if diffusion of the surfactant on
the surface of the layer is sufficiently slow, and consequently negligible, that shear stress
induces large deformations in the layer of liquid. From the mathematical point of view

this gradient of surface tension behaves like an advancing rigid plave. Thus, if the initial
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gradients in surface tension are sufficiently large, the deformations of the liquid layer may
be severe enough leading the film to rupture.

In order to refine the similarity solutions, a "viscous” and also a weak equation for
the evolution of the interface z = h (z,t) are deduced.To peak out the physically relevant
weak solution an entropy condition is displayed. Numerical solutions starting from both
"viscous” and weak formulations will be the aim of a following work.

The dynamics of thin liquid layer.s is important in many industrial process, from
painting a car-body to coating a microchiﬁ ([5], (6]) and also in medicine in the develop-
ment of the respiratory distress syndrome of many prematurely born infants ([3], [6] and
(7).

The last two quoted works represent a very keen analysis on the existence of shock
profiles. They also give a continuous dependence result for the initial value problem
encountered iﬁ flows described above.

Our analysis is eventually orienta.t_ed towards numerical results.

2. The model

The model to be investigated here has been described in details in our previous
work [2] and accordingly only a brief summary is given here. We will consider a thin
liquid layer of a viscous incompressible Newtonian fluid flowing on a rigid inclined plane
{a is the slope). A monolayer of insoluble surfactant creates a gradient of surface tension
which acts at the upper surface of the layer. Thus, this gradient of surface tension can
act along or against gravity.

The variables of the flow are scaled as follows. Let U be a typical velocity cor-
responding to undisturbed height d of the layer. We consider U = pgd®sina/u as the
average velocity of the undisturbed flow, where p is the density assumed constant, g grav-
itational acceleration and p is fluid’s dynamic viscosity. According to what we reported
in [2], the aspect ratio e = d/L « 1, where L is the initial length of the layer, thus the
thin film theory ([1}, p.239), may be used.

From the equation of mass conservation we are led to scale the vertical velocity by
¢ U. We choose to scale time by hje U and the pressure by p U?. We also suppose that
the Reynolds number Re = pUd/yu is sufficiently small so that the leading order inertial

terins in cimentum equation, of O (¢?Re), are negligible.
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The surface tension o at each point of monolayer is related to the local surfactant
concentration I’ through an empirically determined equation of state 0 = o (I'(z)). The
gradient in I', and thus in o, along the monolayer induces a shear stress at the surface of
underlying liquid, and thus a Marangoni flow in the substrate. If the liquid substrate is
thin (as we assume), and if diffusion of the surfactant on the upper surface of the layer
is sufficiently slow, the flow induces large deformations in the layer (Jensen & Grotberg
13)-

Neglecting surface diffusivity of the surfactant, our aim is to analyse these defor-
mations.

A very elaborate discussion on the dependence of o on I’ can be found in [3].
In the expression of the gradient of surface tension do/dz = %%, do/dl' is in general
nonlinear, although a linear law is predominantly used in !iterature. Our analysis remains
chiefly qualitative and mathematically orientated so we do not pay more attention to
these aspects.

If o is scaled by o9, the higher surface tension on the liquid / gas interface, and if
we take the coordinates (z, z), with z vertical to plane and z downwards the plane, scaled
by d, the corresponding velocity field is (u(z, z,t) ,w (=, 2,t)). The upper surface of the
layer is at z = h(z,t).

We notice that in practice it is highly unlikely that gravitational and intermolecular
forces (van der Waals forces) would ever be of the same order. As in the work of Jensen
& Grothberg [3], the influence of intermolecular forces is deeply analysed, our intention
is to concentrate on the dependence of the behaviour (deformations) of th. liquid layer
upon the competition between gravity and the surface tension gradient.

Thus, the equations of momentum and mass conservation for the layer of liquid

are
0= + 1 + sina (1)
= TP T Rt T T
cos a
0 = —p‘t - —F2 (2)
ur+w, =0 (3)
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where F = U/(gh)"/* is the Froude number and subscripts denote differentiation witl
respect to that variable.

On integrating the second of these,

Cos
F?

p=- z+f(:c,t).

On the liquid / gas interface, z = h(z,t), the condition that the normal stress be

equal to atmospheric pressure po reduces essentially to p = po, so

p(z,,0) = 5 h(z,1) = ) +po 0

On this boundary condition we will comment at the end of the paper.

The tangential stress condition at z = h reads

do dl’

U = Ca d—[; E (5)

where Ca = 0o/Up is the capillary number.

With (2.4) the equation of motion (2.1) becomes

1. sina cosa

R =T TR

Now, h, is small, by virtue of the thin film approximation. Thus, unless « is very
small, the last term may be neglected and with the boundary condition (2.5) and the no

- slip condition at z = 0, we find

22 do dI'

Taking into account that the quantities do/dl’ and dI'/dz are given, the incom:
pressibility condition (2.3) gives

w, = —u; = —z h,.
On integration and application again of the no - slip boundary condition we have
w=——h,. ()

The final consideration is the purely kinematic condition at the free surface In

dimensionless form it reads:

w = eh; + uh,,
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The corresponding "viscous” equation for (3.4) reads as follows:
hi+ F(h), =7vhey, 0<y<K1. (13)

Here v is the "viscous” parameter and a solution of this, for vanishing 7, is called an
entropy solution or a vanishing viscosity solution.

A wealk formulation for (3.4) is obtained in a straightforward manner. Multiplying
the equation by a smooth "test function” & € C} (R x R) - the space of functions that

are continuously differentiable with "compéct support”, we obtain the problem:

find u € L3(R x R) such that "

T T w®:+ F(u)®,)didz = — | &(2,0)u(s,0)ds,¥® € CL(RxR).
0 —o0 —~00

Thus a solution of (3.6),- named a weak solution, if it-exists, involves no deriv-
ative on u and hence requires less smoothness than the corresponding solutions of the
”viécous” equation (3.5) or even "inviscid” equation (2.8). Unfortunately, weak solutions
are often not unique, and so an additional question is to identify which weak solution
is the physically correct vanishing viscosity solution. In order to avoid working with
the ”viscous” equation directly, we will formulate another condition on weak solutions
which is easier to check, and which will also pick out the physically relevant solutions.
This is the so called entropy condition (due to Oleinik, [4], p.36) which reads as follows
h(z,t) is the entropy solution if all discontinuities propagating with speed s given by
F(h))— F(h,) = s'(hl — h,) have the property that

B L
for all h between h; and A,.

Finally we observe that the case of F' nonconvex is more complicated mathemati-
cally than that of F' convex and more important the entropy solution might involve both

a shock or a rarefaction wave.

4. Concl.uding remarks

The similarity solution (3.3) can be interpreted as follows:
for t — oo,

|Caoz|, o0,<0
0, g, > 0.

h =
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This means that a negative gradient of surface tension could sustain a liquid layer
of height |Cao,| and a positive gradient does not. It is phisically plausible and is in fact
a linear theory of thin liquid layer (thin liquid film) rupture. Moreover, this result is
quite insensitive to the viscosity of the liquid. It depends essentially upon the sign of the
gradient of surface tension, confirming the fact that this gradient drives the system. In
[9] one could find a nonlinear theory of film rupture for a horizontal liquid film. There the
surface tension is assumed to be constant, London / van der Waals forces are included,
but double - layer forces are neglected.

The "viscous” equation for evolution equation, (3.5), and the weak formulation of
that, (3.6), with entropy condition, (3.7), create a fine background on which numerical
methods could work. Such numerical results could refine the rough information given by
similarity solution.

They will be the aim of a following paper.

On the importance of the boundary condition for pressure on the liquid/gas inter-
face we have the following comment. If one take the Laplace-Young equation (the normal
stress due to surface tension is proportional to curvature) as a boundary condition, in-
stead of p = pg, z = h, which is physically motivated, he obtains an equation for h(z,t)
which is similar to the lubrication one from [5]. It reads:

ehy + %— [h3 (Rehzze +1) + %Caa,,h’] =0.

xz

A proper comparison between these two type of boundary conditions and their implica-
tions on the theory of flows where the surface tension is a driving mechanism remains ar
open problem.
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