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OPERATOR EQUATIONS OF DEGREE 2
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1. Introduction

For solving the nonlinear equations, in a recent paper, A. Diaconu [7] has proposed the
Chebyshev-type method (1.2), for which the computation of the inverse of the derivative
at each step is avoided. Similar methods have been studied by other authors [5], [6], [14],
but these does not preserve the r-convergence order 3.

In this note we shall apply method (1.2) for solving polynomial operator equations of
degree 2. We shall show that the hypotheses for the convergence of the method take a
simplified form, the convergence order remaining unaltered. We shall consider then the
eigenproblem for scalar matrices, applying to it the studied method. Numerical examples
are also given.

Let X be a Banach space, F : X → X a nonlinear operator and consider the equation

F (x) = θ, (1.1)

θ being the null element of X .
For solving (1.1) in [7] there are considered three sequences, (xk)k≥0 ⊂ X and (Bk)k≥0,

(Ck)k≥0 ⊂ L (X) given by

Ck = Bk (2I − F ′ (xk)Bk)

xk+1 = xk − CkF (xk)−
1
2
CkF

′′ (xk) (CkF (xk))
2

(1.2)

Bk+1 = Bk

[

3I − 3F ′ (xk+1)Bk + (F ′ (xk+1)Bk)
2
]

, k = 0, 1, ... ,

where x0 ∈ X and B0 ∈ L (X), L (X) being the set of all linear continuous operators on
X and I ∈ L (X) being the identity operator.

Remark. The convergence with r-order 3 of this method is obtained despite a general
principle which suggests that every newly computed unknown should be used at once in the
determination of the other unknowns (e.g. the Gauss-Seidel method for linear systems).
In our case we could consider Ck instead of Bk in the determination of Bk+1.
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2. The convergence of the method

We shall give first a lemma.

Lemma. If the sequences of real positive numbers (δk)k≥0 and (ρk)k≥0 satisfy

δk+1 ≤
(

δk + 2ρk + 2ρ2k
)3

ρk+1 ≤ ρkδ
2
k + ρ2kδ

2
k + 2 ρ3k + ρ4k, k = 0, 1, ...,

where max { δ0, ρ0} ≤ 1
7d for some 0 < d < 1,

then the following relation holds:

max { δk, ρk} ≤ 1
7d

3k

, k = 0, 1, ... .

The proof can be easily obtained by induction.
In the following we shall study the convergence of method (1.2) supposing that F is a

polynomial operator of degree 2, i.e. F is indefinite differentiable on X and F (i) = θi for
i ≥ 3, θi being the i-linear null operators.

Under this condition F satisfies

F (y) = F (x) + F ′ (x) (y − x) + 1
2
F ′′ (x) (y − x)

2
, for all x, y ∈ X, (2.1)

where, in fact, F ′′ (x) is a constant bilinear operator which does not depend on x.

Let x0 ∈ X and r,K > 0 be two real numbers. Denote S = {x ∈ X | ‖x− x0‖ ≤ r} and
suppose that we have the estimation

‖F ′′ (x)‖ ≤ K, for all x ∈ S.

Concerning the convergence of method (1.2) , the following result holds:

Theorem. If the operator F and the elements x0 ∈ X, B0 ∈ L (X) satisfy:

a) there exists F ′ (x0)
−1

and ‖F ′ (x0)
−1

‖ ≤ b0 for some b0 > 0;
b) q = Kb0r < 1;
c) max {δ0, ρ0} ≤ 1

7d for some 0 < d < 1, where

ρ0 = Ka2

2 ‖F (x0)‖ , δ0 = ‖I − F ′ (x0)B0‖ , a = 64
49b and b = b0

1−q
;

d) 16d
49Ka(1−d2)

≤ r,

then the following properties hold:
1) the sequences (xk)k≥0, (Bk)k≥0, (Ck)k≥0 converge and (xk)k≥0 ⊂ S;

2) denoting x∗ = limxk, B = limBk, C = limCk, then F (x∗) = θ̄ and B = C =

F ′ (x∗)
−1

;
3) the following estimations are true:

‖x∗ − xk‖ ≤
16 d3

k

49K a
(

1− d2·3
k
) ;

‖B −Bk‖ ≤
1656 a d3

k

2401
(

1− d2·3
k
) , k = 0, 1, . . .
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Proof. We shall prove firstly that the first order derivative of F is invertible on S. By a)
and b) we have

‖I − F ′ (x0)
−1

F ′ (x) ‖ ≤ ‖F ′ (x0)
−1

‖ ‖F ′ (x0)− F ′ (x)‖ ≤ b0Kr = q < 1,

for all x ∈ S. It follows that the operator T (x) = F ′ (x0)
−1

F ′ (x) is invertible on S and

T (x)
−1

= F ′ (x)
−1

F ′ (x0) , whence F ′ (x)
−1

= T (x)
−1

F ′ (x0)
−1

and

‖F ′ (x)
−1

‖ ≤ b0
1−q

= b.

For the norms of B0 and C0, taking into account the hypotheses, we get

‖B0‖ ≤‖B0 − F ′ (x0)
−1

‖+ ‖F ′ (x0)
−1

‖

≤‖F ′ (x0)
−1

‖ (1 + ‖I − F ′ (x0)B0‖)

≤b0 (1 + δ0) ≤
8
7b0 < 8

7b

and
‖C0‖ ≤ ‖B0‖+ ‖I − F ′ (x0)B0‖ · ‖B0‖ ≤ ‖B0‖ (1 + δ0) ≤

64
49b = a,

so ‖B0‖ ≤ a and ‖C0‖ ≤ a.
From (1.2) we have

‖x1 − x0‖ ≤a
(

1 + Ka2

2 ‖F (x0)‖
)

‖F (x0)‖

≤a (1 + ρ0) ‖F (x0)‖

< 8
7a ‖F (x0)‖ = 2ρ0

Ka2 · 8
7a = 16d

49Ka
,

whence, taking into account d) it follows that x1 ∈ S.
Further, by (1.2) and (2.1),

‖F (x1)‖ ≤‖I − F ′ (x0)C0‖
(

1 + 1
2 ‖F

′′ (x0)‖ ‖C0‖
2
‖F ′ (x0)‖

)

‖F (x0)‖

+ 1
2 ‖F

′′ (x0)‖
2
‖C0‖

4
‖F (x0)‖

3
+ 1

8 ‖F
′′ (x0)‖

3
‖C0‖

6
‖F (x0)‖

4
,

whence

Ka2

2 ‖F (x1)‖ ≤Ka2

2 ‖F (x0)‖ · ‖I − F ′ (x0)C0‖
(

1 + Ka2

2 ‖F (x0)‖
)

+ 2
(

Ka2

2 ‖F (x0)‖
)3

+
(

Ka2

2 ‖F (x0)‖
)4
.

Denoting ρ1 = Ka2

2 ‖F (x1)‖ and taking into account the inequality

‖I − F ′ (x0)C0‖ ≤ ‖I − F ′ (x0)B0‖
2
= δ20

it follows
ρ1 ≤ ρ0δ

2
0 + ρ20δ

2
0 + 2ρ30 + ρ40. (2.2)
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From the third relation of (1.2) we get

‖I − F ′ (x1)B1‖ =
∥

∥ (I − F ′ (x1)B0)
3 ∥
∥

≤‖I − F ′ (x1)B0‖
3
≤

≤
(

‖I − F ′ (x0)B0‖+ ‖B0‖K ‖x1 − x0‖
)3

≤
(

δ0 + 2ρ0 + 2ρ20
)3

,

i.e.,

δ1 ≤
(

δ0 + 2ρ0 + 2ρ20
)3

. (2.3)

By (2.2) , (2.3) and hypothesis b), we obtain

ρ1 ≤ 1
7
d3

δ1 ≤ 1
7d

3.

Suppose now that the following properties hold:
α ) x0, x1, ..., xk ∈ S;

β) ρi :=
Ka2

2 ‖F (xi)‖ ≤ 1
7d

3i

and δi := ‖I − F ′ (xi)Bi‖ ≤ 1
7d

3i

, i = 0, k.
It easily follows that ‖Bk‖ ≤ a, ‖Ck‖ ≤ a and

‖xk+1 − xk‖ ≤a
(

1 + Ka2

2 ‖F (xk)‖
)

‖F (xk)‖ (2.4)

≤a (1 + ρk) ‖F (xk)‖

≤16ρk

7Ka
≤ 16d3

49Ka
.

From the above formula it follows that xk+1 ∈ S:

‖xk+1 − x0‖ ≤ 16d
49Ka

k
∑

i=0

d3
i−1 ≤ 16d

49Ka(1−d2) ≤ r.

Denoting ρk+1 = Ka2

2 ‖F (xk+1)‖ and δk+1 = ‖I − F ′ (xk+1)Bk+1‖, the following relations
are obtained in the same manner as for ρ1 and δ1:

ρk+1 ≤ ρkδ
2
k + ρ2kδ

2
k + 2ρ3k + ρ4k

δk+1 ≤
(

δk + 2ρk + 2ρ2k
)3

,

whence, by the Lemma, we get

ρk+1 ≤ 1
7
d3

k+1

(2.5)

δk+1 ≤ 1
7d

3k+1

.

Then properties α), β), (2.4) and (2.5) hold for all k ∈ N. We shall prove now that
(xk)k≥0 is a Cauchy sequence.
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Indeed,

‖xk+s − xk‖ ≤ 16d3k

49Ka

k+s−1
∑

i=k

d3
s−3k

≤ 16d3k

49Ka(1−d2·3k)
,

for all s, k ∈ N, which proves that (xk)k≥0 converges. Denoting x∗ = lim
k→∞

xk and passing

to limit for s → ∞ in the above inequality, we obtain

‖x∗ − xk‖ ≤ 16d3k

49Ka(1−d2·3k)
, k = 0, 1, . . .

The convergence of (Bk)k≥0 is obtained from the third relation of (1.2):

‖Bk+1 −Bk‖ ≤ ‖Bk‖ · ‖2I − F ′ (xk+1)Bk‖ · ‖I − F ′ (xk+1)Bk‖

≤a
(

1 + δk + 2ρk + 2ρ2k
) (

ρk + 2ρk + 2ρ2k
)

≤ a 1656
2401d

3k

.

Denoting B = limBk it easily follows that

‖B −Bk‖ ≤ 1656ad3k

2401(1−d2·3k)
, k = 0, 1, . . . �

Remark. The inequalities from the hypothesis of the Lemma can be replaced by δ0 ≤

αd, ρ0 ≤ βd for 0 < d < 1 and α, β > 0 satisfying
(

α+ 2β + 2β2d
)3

≤ α and βα2+β2α2+

2β3 + β4d ≤ β.

We shall obviously obtain in the conclusion that δk ≤ αd3
k

, ρk ≤ βd3
k

, k = 0, 1, ... .
The theorem can be reformulated then accordingly. �

3. The eigenproblem for linear continuous operators

3.1. The infinite dimensional case.
Let V be a Banach space over the field K (where K = C or K = R) and A : V → V a

linear continuous operator. The scalar λ ∈ K is an eigenvalue of A iff the equation

Av − λv = θ (3.1)

has at least a solution v∗ 6= θ, called an eigenvector of A corresponding to λ, where θ is
the null element of V .

For the simultaneous determination of a v∗ and a λ we attach to equation (3.1) another
equation

G (v) = 1, (3.2)

where G : V → K is a polynomial functional of degree two for which G (0) 6= 1 (a norming
function).

Remark. The functional G may also be taken as a polynomial functional of degree one,
i.e. a linear continuous functional, but then dimKerG = dimV − dim ImG = n − 1, for
the finite dimensional case, and dimKerG = ∞ otherwise. So, there exist eigenvectors
which do not fulfill equation (3.2). �
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Denote the Banach space X = V ×K and for x =
(

v
λ

)

, with v ∈ V and λ ∈ K, define

‖x‖ = max {‖v‖ , |λ|} .

Considering the operator F : X → X given by

F (x) =

(

Av − λv

G (v)− 1

)

=

(

(A− λI) v
G (v)− 1

)

,

and denoting by θ̄ =
(

θ
0

)

the null element of X , then the operatorial equation for which
the solution yields an eigenvalue and an eigenvector of A is

F (x) = θ̄. (3.3)

It is known that the Fréchet derivatives of F are (see [4]):

F ′ (x0)h1 =

(

A− λ0I −v0
G′ (v0) 0

)(

u1

α1

)

=

(

Au1 − λ0u1 − α1v0
G′ (v0) u1

)

,

F ′′ (x0)h1h2 =

(

−α1u2 − α2u1

G′′ (v0)u1u2

)

,

where x0 =
(

v0

λ0

)

, h1 =
(

u1

α1

)

, h2 =
(

u2

α2

)

with v0, u1, u2 ∈ V and λ0, α1, α2 ∈ K.

It is obvious that F (i) (x0) h1...hi = θ̄, for all i ≥ 3 and x0,h1, ..., hi ∈ X.

Our theorem can be applied for this function F and we can take K = max {2, ‖G′′‖} .

3.2. The eigenproblem for complex matrices.
In the following we shall apply the studied method for the approximation of the eigen-

values and eigenvectors of complex matrices.
Let A = (aij)i,j=1,n ∈ Mn (K) be a square matrix with the elements aij ∈ K. Consider

V = Kn and X = V ×K = Kn+1. In this case the equation (3.3) is written

Fi (x) = Fi

(

x(1), ..., x(n+1)
)

= 0, i = 1, n+ 1,

where for i = 1, n we have

Fi (x) = ai1x
(1) + ...+ ai,i−1x

(i−1) +
(

aii − x(n+1)
)

x(i) + ai,i+1x
(i+1) + ...+ ainx

(n),

and for the norming function G we can take

Fn+1

(

x(1), ..., x(n+1)
)

= 1
2

n
∑

i=1

(

x(i)
)2

− 1. (3.4)

A solution x∗ of equation F (x) = θ̄ yields an eigenvalue λ = x
(n+1)
∗ and a corresponding

eigenvector v∗ =
(

x
(1)
∗ , ..., x

(n)
∗

)

of the matrix A.
The first and second order derivatives of F are given by
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F ′ (x) h =













a11 − x(n+1) a12 ... a1n −x(1)

a21 a22 − x(n+1) ... a2n −x(2)

...
...

...
...

an1 an2 ... ann − x(n+1) −x(n)

x(1) x(2) ... x(n) 0

























h(1)

h(2)

...
h(n)

h(n+1)













,

and

F ′′ (x)hk =













−k(n+1) 0 ... 0 −k(1)

0 −k(n+1) ... 0 −k(2)

...
...

...
...

0 0 ... −k(n+1) −k(n)

k(1) k(2) ... k(n) 0

























h(1)

h(2)

...
h(n)

h(n+1)













. (3.5)

where x =
(

x(1), ..., x(n+1)
)

, h =
(

h(1), ..., h(n+1)
)

, k =
(

k(1), ..., k(n+1)
)

∈ Kn+1.

Suppose that Kn+1 is equipped with the norm

‖x‖ = max
1≤i≤n+1

∣

∣x(i)
∣

∣, x =
(

x(1), ..., x(n+1)
)

∈ K
n+1.

Then, from (3.5) it follows that we can take K = ‖F ′′‖ = n. Our theorem can be stated
accordingly.

Another possible choice for the definition of Fn+1, is:

Fn+1

(

x(1), ..., x(n+1)
)

= 1
2n

n
∑

i=1

(

x(i)
)2

− 1, (3.6)

in which case we can take K = ‖F ′′‖ = 2. In this case K does not depend on n.
Remark. In [15] it is proved the following result. If (v, λ) is an eigenpair then F ′(v, λ) is
nonsingular iff λ is simple. Hence our results apply only for simple eigenvalues.

4. Numerical examples

Consider

A =







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






,

having the eigenvalues and the corresponding eigenvectors λ1,2,3 = 2, v1 = (1, 0, 0, 1) ,
v2 = (1, 0, 1, 0) , v3 = (1, 1, 0, 0), λ4 = −2, v4 = (−1, 1, 1, 1) .

Taking x0 = (−1, 3, 1, 3,−1.5) , B0 = F ′ (x0)
−1

and using formula (3.4) for Fn+1 we
get:

k x
(1)
k x

(2)
k x

(3)
k x

(4)
k x

(5)
k

0 −0.3000000000 1.000000000 0.3000000000 1.000000000 −1.700000000
1 −0.6344924627 0.6757048140 0.6344924627 0.6757048140 −1.901115297
2 −0.7066264375 0.7068982234 0.7066264375 0.7068982234 −1.998773347
3 −0.7071067705 0.7071067768 0.7071067705 0.7071067768 −1.999999976
4 −0.7071067812 0.7071067812 0.7071067812 0.7071067812 −2.000000000
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Using formula (3.6) for Fn+1 and taking x0 = (−1, 1.8, 1, 1.8,−1.6) , B0 = F ′ (x0)
−1

,

we obtain

k x
(1)
k x

(2)
k x

(3)
k x

(4)
k x

(5)
k

0 −1.000000000 1.800000000 1.000000000 1.800000000 −1.600000000
1 −1.382930642 1.405515579 1.382930642 1.405515579 −1.972622248
2 −1.414185197 1.414209835 1.414185197 1.414209835 −1.999975824
3 −1.414213562 1.414213562 1.414213562 1.414213562 −2.000000000
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