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ON A CHEBYSHEV-TYPE METHOD FOR
APPROXIMATING THE SOLUTIONS OF POLYNOMIAL
OPERATOR EQUATIONS OF DEGREE 2

EmiL CATINAS, ION PAVALOIU

1. INTRODUCTION

For solving the nonlinear equations, in a recent paper, A. Diaconu [7] has proposed the
Chebyshev-type method (1.2), for which the computation of the inverse of the derivative
at each step is avoided. Similar methods have been studied by other authors [5], [6], [14],
but these does not preserve the r-convergence order 3.

In this note we shall apply method (1.2) for solving polynomial operator equations of
degree 2. We shall show that the hypotheses for the convergence of the method take a
simplified form, the convergence order remaining unaltered. We shall consider then the
eigenproblem for scalar matrices, applying to it the studied method. Numerical examples
are also given.

Let X be a Banach space, F' : X — X a nonlinear operator and consider the equation

F(x) =0, (1.1)

0 being the null element of X.
For solving (1.1) in [7] there are considered three sequences, (zx);>q C X and (Bk) >

(Ck)r>o C £(X) given by
Cy = By, (21 — F' (x3,) By)
wpi1 = 1 — CLF (z3) — SORF" (1) (CW F (2x))? (1.2)
Bii1 = By, [3] ~3F (2411) B + (F (zes1) BY)?|,  k=0,1,...,

where zp € X and By € L£(X), £(X) being the set of all linear continuous operators on
X and I € £ (X) being the identity operator.

Remark. The convergence with r-order 3 of this method is obtained despite a general
principle which suggests that every newly computed unknown should be used at once in the
determination of the other unknowns (e.g. the Gauss-Seidel method for linear systems).
In our case we could consider (Y instead of By in the determination of By .
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2. THE CONVERGENCE OF THE METHOD

We shall give first a lemma.

Lemma. If the sequences of real positive numbers (0 ),~o and (pr)r>o Satisfy

3
k1 < (O + 20k + 207)
Pri1 < prOi + pids +2p8 + pi, k=0,1,..,

where max { &y, po} < +d for some 0 < d < 1,
then the following relation holds:

max { 0, pr} < %d?’k, k=0,1,....

The proof can be easily obtained by induction.

In the following we shall study the convergence of method (1.2) supposing that F' is a
polynomial operator of degree 2, i.e. F is indefinite differentiable on X and F() = 6, for
t > 3, 6; being the ¢-linear null operators.

Under this condition F' satisfies
Fly)=F(z)+ F' (z)(y —x) + %F” (x) (y — m)2 , for all z,y € X, (2.1)

where, in fact, F” (x) is a constant bilinear operator which does not depend on z.
Let zp € X and r, K > 0 be two real numbers. Denote S = {z € X]| ||z — z¢|| < r} and
suppose that we have the estimation

|F" (2)] < K, for all z € S.

Concerning the convergence of method (1.2), the following result holds:

Theorem. If the operator F and the elements xo € X, By € L (X) satisfy:
a) there exists F' (z0)”" and |F’ (zo) ™" || < by for some by > 0;
b) g = Kbor < 1;
¢) max {do, po} < 1d for some 0 < d < 1, where

2
po =B \F(@o)ll, So=Ill—F (x0) Boll, a=3%band b=

16d
d) oRa(—a) =

then the following properties hold:
1) the sequences (Tx);>0: (Bk)gso: (Ck)iso converge and (z),sq C S_;
2) denoting x* = limxy, B = lim By, C = limCy, then F (z*) = 0 and B = C =
F’ (33*)_1 ;
3) the following estimations are true:
Jo* o) < 108
xt —x ;
"= 49K 0 (1 — d23)

B < 1656 a d*"
1= 2401 (1 — @237

1B — k=0,1,...
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Proof. We shall prove firstly that the first order derivative of F' is invertible on S. By a)
and b) we have

1 = F' (o) " F' () | < |F" (o) ™" [ ||F" () = F' ()| < boKr = q <1,

for all x €S. It follows that the operator T (z) = F' (zg) "' F' () is invertible on S and
T(z)"' = F' ()" F'(x0), whence F' (z) " =T (z) " F' (20)" " and

/ -1 bo  __
[F" ()" || < 72, =0
For the norms of By and Cj, taking into account the hypotheses, we get

1Boll <l Bo — F (o) ™" || + |1F' (o) " |
<||F (o) ™" | (14 | = F' (x0) Bol))
<by (14 d0) < Eby < b
and
IColl < IBoll + 11 = F' (o) Bol| - | Boll < ||Boll (1 + o) < §50 = a,

so [|Bol| < a and ||Co|| < a.
From (1.2) we have

lz1 — o]l <a(l+ K& ||F (z0)]|) IIF (zo)l]
<a(1+ po) || F (x0)]l

2
<$Cl HF(xO)H = KpaOQ : ga = 452?(17

whence, taking into account d) it follows that x; € S.
Further, by (1.2) and (2.1),

IF ()]l <[ = F (x0) Coll (1 + 5 |F” (@o) | IColl* | (xo)I| ) || F (o)
+ 3 1" (o) I* 1Coll* I F (o) I” + & 1F” (o) [I° 1Col1® | (x0)II*

whence

K (a0) | <52 (o)l - 11— F (o) Coll (1 + 522 [ (o))
+2(E&(|F (20)[])” + (B£ |1F (o))"

Denoting p; = KQ“Q |F' (z1)|| and taking into account the inequality

1T — F' (x0) Col| < | = F' (o) Bo||* = 62

it follows
p1 < pody + padi + 205 + po- (2:2)
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From the third relation of (1.2) we get

IT = F' (21) Bu|| =|| (I = F' (1) Bo)” |
<= F' (21) Bo|” <
<(|l1 = F' (z0) Bol| + | Bol| K |lz1 — wo|| )
< (60 +2p0 + 202)°,
ie.,
51 < (J0+2p0 +203)° . (2.3)
By (2.2),(2.3) and hypothesis b), we obtain

143
p1 < 17d
0 < 7d3.

Suppose now that the following properties hold:

a) g, 21, ..., T €5

B) pi = B || F (2)|| < 1d® and §; := | — F' (2;) Bi|| < +d*, i =0, k.
It easily follows that ||By|| < a, ||Ck|| < a and

lies = aell <a(1+E5= |[F (@)l I1F (20) | (2.4)

<a(1+ px) | F (zx)]|

16py 164>
f§7Ka f; 49Ka"

From the above formula it follows that xx,1 € S:

k
d 31 d
lzkt1 = zoll < z5%4 Zd < 49K;(617d2) ST
i=0

Denoting pgy1 = KTGQ |F (zr+1)|| and 6xy1 = ||[I — F' (xk41) Brr1]|, the following relations
are obtained in the same manner as for p; and d;:

pr1 < prOi + RO} + 2p} + pi
3
k1 < (O + 20K+ 207) ",

whence, by the Lemma, we get

gk+1

pry1 < d (2.5)

1 3k+1
Opp1 < =d” .

Then properties ), 3), (2.4) and (2.5) hold for all £ € N. We shall prove now that
(Tk) >0 is a Cauchy sequence.
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Indeed,
k+s—1

k s k
lzirs =l < §5ica Do 4" < gt
i=k

— 49Ka(1-d23")’

for all s,k € N, which proves that (zx),~, converges. Denoting z* = klim xp and passing
- — 00

to limit for s — oo in the above inequality, we obtain

Bk
HQZ*—QZRHSW, k:O,l,

The convergence of (By), >, is obtained from the third relation of (1.2):

1Bess = Bl <11Bell - 121 = F (zis1) Ball - |7 — F (a4) Bl
<a (1+ 6 +2p1 + 2,0%) (P + 20k + 2,0%) < a%d‘q’k.

Denoting B = lim By, it easily follows that

1656ad>"

Remark. The inequalities from the hypothesis of the Lemma can be replaced by §y <
ad, pg < Bdfor 0 < d < 1and «, 3 > 0 satisfying (a + 28+ 252d)3 < avand Ba?+p2a’+
28° + 8*d < .

We shall obviously obtain in the conclusion that §; < ozd3k, Pr < ﬁd?’k, k=0,1,...
The theorem can be reformulated then accordingly. [

3. THE EIGENPROBLEM FOR LINEAR CONTINUOUS OPERATORS

3.1. The infinite dimensional case.
Let V be a Banach space over the field K (where K=Cor K=R)and A:V -V a
linear continuous operator. The scalar A € K is an eigenvalue of A iff the equation

Av— v =40 (3.1)

has at least a solution v* # 0, called an eigenvector of A corresponding to A, where 0 is
the null element of V.
For the simultaneous determination of a v* and a A we attach to equation (3.1) another
equation
G(v) =1, (3.2)

where G : V — K is a polynomial functional of degree two for which G (0) # 1 (a norming
function).

Remark. The functional G may also be taken as a polynomial functional of degree one,
i.e. a linear continuous functional, but then dim Ker G = dimV — dimIm G = n — 1, for
the finite dimensional case, and dim Ker G = oo otherwise. So, there exist eigenvectors
which do not fulfill equation (3.2). O
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Denote the Banach space X =V x K and for z = (K), with v € V and X\ € K, define
]| = max {{|v]|, |A[}.

Considering the operator F': X — X given by
[ Av—=Xv\  [((A-=A])v
Fw)= (G(v)—l) = ( G(v) 1 )

and denoting by 0 = (g) the null element of X, then the operatorial equation for which
the solution yields an eigenvalue and an eigenvector of A is

F(z)=4. (3.3)

It is known that the Fréchet derivatives of F' are (see [4]):

/ o A— )\0] —Vo Ul o AU1 — )\Oul — X1
F(Q:O)hl_(G’(vo) 0 )(al)_( G/(Uo)ul )7

7 [ —OQ1U2 — QU
F (-730) hihg = ( el (UO) ULt ) )

where ¢ = (Kz), hi = (Zi), ho = (Zz) with vg, u1,us € V and \g, a1, as € K.
It is obvious that F® (w0) hy...h; = 0, for all i > 3 and x¢,hq, ..., h; € X.
Our theorem can be applied for this function F' and we can take K = max {2, ||G"||}.

3.2. The eigenproblem for complex matrices.

In the following we shall apply the studied method for the approximation of the eigen-
values and eigenvectors of complex matrices.

Let A = (aij); j—1.,, € Mn (K) be a square matrix with the elements a;; € K. Consider

V =K"and X =V x K =K""! In this case the equation (3.3) is written

Fi (.11) :Fi(x(l),...,x(”ﬂ)) :0, 1= 1,n+1,
where for i = 1, n we have
Fi (33) = CLﬂQ?(l) + ...+ CLiﬂ;,lQ?(iil) + (aii — $(n+1))$(i) + ai7i+1az(i+1) + ...+ CLin.I‘(n),

and for the norming function G we can take

n

Fopr (2, 2@ty = 157 (20)% — 1. (3.4)
i=1
A solution z* of equation F (x) = 0 yields an eigenvalue \ = a:gknﬂ) and a corresponding
eigenvector v* = (wil), ...,win)) of the matrix A.

The first and second order derivatives of F' are given by
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ail — $(n+1) a2 a1n _g;(l) h(l)
a1 agsg — x(n+1) agn —;1;(2) h(?)
F' (x)h = : : : : N
an1 an2 cee Qpp, — x(n—i—l) —gj(n) h(n)
M z(2) z(™) 0 R +1)
d
" — Kt 0 0 kM R
0 —ktD 0 —_k®@ R(2)
F" (z) hk = : : : : | 35
0 0 o —kHD () B(n)
A GO A 182 0 p(n+1)

where z = (2, .,z tD) h = (AW, ROFD) | = (KD, k0D e Kt
Suppose that K"*! is equipped with the norm

|z|| = max ’a:(i)’ x = (a:(l) a:("+1)) e Knt!
1<i<n-+t1 ’ T '

Then, from (3.5) it follows that we can take K = ||F"|| = n. Our theorem can be stated
accordingly.
Another possible choice for the definition of F}, 1, is:
Fopr (2, 20y = LN (20)% — 1, (3.6)

=1

in which case we can take K = ||F"|| = 2. In this case K does not depend on n.
Remark. In [15] it is proved the following result. If (v, \) is an eigenpair then F'(v, \) is
nonsingular iff A is simple. Hence our results apply only for simple eigenvalues.

4. NUMERICAL EXAMPLES

Consider
1 1 1 1
1 1-1-1
A= 1-1 1-1)°
1-1-1 1
having the eigenvalues and the corresponding eigenvectors A\ 23 = 2, v; = (1,0,0,1),

Vo = (1,0, 1,0), V3 = (1, 1,0,0), )\4 = —2, Vg4 = (—1, 1, 1, 1) .
Taking 2o = (—1,3,1,3,—1.5), By = F’ (z0) " and using formula (3.4) for F,; we
get:

mI({:l) 331(3) xl(f) x](;l) 331(5)
—0.3000000000  1.000000000  0.3000000000  1.000000000  —1.700000000
—0.6344924627 0.6757048140 0.6344924627 0.6757048140 —1.901115297
—0.7066264375 0.7068982234 0.7066264375 0.7068982234 —1.998773347

—0.7071067705 0.7071067768 0.7071067705 0.7071067768 —1.999999976
—0.7071067812 0.7071067812 0.7071067812 0.7071067812 —2.000000000

= w N RO
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Using formula (3.6) for F,; and taking zo = (—1,1.8,1,1.8,—1.6), By = F’ (xo)fl,
we obtain
k x,(cl) x,(f) wg’) wgl) wf))
0 —1.000000000 1.800000000 1.000000000 1.800000000 —1.600000000
1 —1.382930642 1.405515579 1.382930642 1.405515579 —1.972622248
2 —1.414185197 1.414209835 1.414185197 1.414209835 —1.999975824
3 —1.414213562 1.414213562 1.414213562 1.414213562 —2.000000000
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