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Abstract. Inexact Newton methods are variant of the Newton method
in which each step satisfies only approximately the linear system (Ref.
1). The local convergence theory given by the authors of Ref. 1 and
most of the results based on it consider the error terms as being pro-
vided only by the fact that the linear systems are not solved exactly.
The few existing results for the general case (when some perturbed linear
systems are considered, which in turn are not solved exactly) do not
offer explicit formulas in terms of the perturbations and residuals. We
extend this local convergence theory to the general case, characterizing
the rate of convergence in terms of the perturbations and residuals.

The Newton iterations are then analyzed when, at each step, an
approximate solution of the linear system is determined by the following
Krylov solvers based on backward error minimization properties:
GMRES, GMBACK, MINPERT. We obtain results concerning the follow-
ing topics: monotone properties of the errors in these Newton–Krylov
iterates when the initial guess is taken 0 in the Krylov algorithms; con-
trol of the convergence orders of the Newton–Krylov iterations by the
magnitude of the backward errors of the approximate steps; similarities
of the asymptotical behavior of GMRES and MINPERT when used in a
converging Newton method. At the end of the paper, the theoretical
results are verified on some numerical examples.
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1. Introduction

Consider the system of nonlinear equations

F (x)G0, (1)

where F: �N→�N is a nonlinear mapping and suppose that:

(C1) There exists x* ∈ �N such that F (x*)G0.

A classical approach for approximating x* is the Newton method,
which results in the following algorithm:

(NM) Choose an initial approximation x0∈ �N.
For kG0, 1, . . . until convergence, do the following steps.

Step 1. Solve F ′(xk )skG−F (xk ).
Step 2. Set xkC1GxkCsk .

At each iteration of the Newton method, a routine for solving the
resulting linear system must be called. The direct methods for linear systems
cannot offer always the exact solution when used in floating point arithmetic
and they may be inefficient for large general systems. Usually, some of the
iterative methods cannot offer the exact solution after a finite number of
steps even in exact arithmetic. Another fact is that, when xk is far from x*,
it may be worthless to solve exactly the system. These reasons require a
convergence analysis which takes into account some error terms.

Several Newton-type methods have been studied. Some sufficient con-
ditions for different convergence orders have been given in Refs. 2–16 and
references therein. A characterization of superlinear convergence and of
convergence with orders 1Cp, p ∈ (0, 1], has been obtained by Dennis and
Moré in Refs. 17–18 for sequences given by the following quasi-Newton
method:

xkC1GxkAB−1
k F (xk ), kG0, 1, . . . , x0∈ �N,

(Bk )k¤0 ⊂ �NBN being a sequence of invertible matrices.
A characterization of local superlinear convergence and local conver-

gence with orders 1Cp, p ∈ (0, 1], of the Newton methods which take into
account other error terms has been given by Dembo, Eisenstat, and Steihaug
(Ref. 1). They considered in their paper the following inexact Newton
method:

(INM) Choose an initial approximation x0∈ �N.
For kG0, 1, . . . , until convergence, do the following steps.

Step 1. Find sk such that F ′(xk )skG−F (xk )Crk .
Step 2. Set xkC1GxkCsk .
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The error terms (residuals) rk represent the amounts by which the solu-
tions sk , determined in an unspecified manner, fail to satisfy the exact
systems (NM). Their magnitudes are determined by the relative residuals
��rk �����F (xk )��, supposed to be bounded by the forcing sequence (ηk )k¤0 ,

��rk �����F (xk )��⁄ηk , kG0, 1, . . . . (2)

The local convergence analysis given in Ref. 1 characterizes the conver-
gence orders of (xk )k¤0 given by the (INM) in terms of the magnitudes of
rk ; see also Refs. 19–20 for other convergence results. However, in this
paper as well as in most other papers using these results, the error terms rk

are considered to appear only because the exact Newton systems (NM) are
solved approximately. But in many situations, it is hard to find the exact
value of F ′(x), and in some cases even of F (x). On the other hand, F ′(x) or
its approximation and F (x) are both altered when represented in floating
point arithmetic.

The question that arises naturally is: What magnitudes can we allow in
perturbing the matrices F ′(xk ) and the vectors AF (xk ) so that the conver-
gence order of the resulting method does not decrease?

The Newton methods with perturbed linear systems have been con-
sidered by several authors (see for instance Refs. 9, 11, 21, and references
therein), but these methods were not analyzed with respect to their conver-
gence orders.

Martinez, Parada, and Tapia (Ref. 22) have analyzed the superlinear
convergence of sequences given by the following damped and perturbed
quasi-Newton method:

xkC1GxkAα kB
−1
k [F (xk )Crk ],

where 0Fα k⁄1, rk ∈ �N, kG0, 1, . . . , and x0∈ �N; but their superlinear con-
vergence was not characterized simultaneously in terms of α k , Bk , rk .

In Ref. 23, Ypma studied the case when the matrices F ′(xk ) and the
vectors AF (xk ) are calculated approximately, the resulting linear systems
being solved inexactly. However, the residuals were considered to be incor-
porated in those perturbed linear systems. Consequently, the obtained con-
vergence results do not offer explicit formulas in terms of the magnitude of
the perturbations and residuals. Recently, Cores and Tapia (Ref. 24) have
considered the exact solving of perturbed linear systems, but they have
obtained only sufficient conditions on the perturbations for different con-
vergence orders to be attained.

We consider here the perturbations (∆k )k¤0 ⊂ �NBN and (δk )k¤0 ⊂ �N,
being led to the study of the following inexact perturbed Newton method:

(IPNM) [F ′(xk )C∆k ]skG[−F (xk )Cδk ]Cr̂k ,

xkC1GxkCsk , kG0, 1, . . . , x0∈ �N.
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The terms r̂k denote the residuals of the approximate solutions sk of the
linear systems

[F ′(xk )C∆k ]sG−F (xk )Cδk .

When these systems are assumed to be solved exactly [i.e., r̂kG0, kG
0, 1, . . . , in the (IPNM)], we call the resulting method a perturbed Newton
method,

(PNM) [F ′(xk )C∆k ]skG−F (xk )Cδk .

This frame will be useful for the study of some Newton–Krylov methods in
connection with backward errors.

The paper is structured as follows. In Section 2, we give two conver-
gence results for the (IPNM). In Section 3, we characterize the superlinear
convergence and the convergence with orders 1Cp, p ∈ (0, 1], of the (IPNM),
and we also provide some sufficient conditions. In Section 4, we analyze the
Newton methods in which the linear systems from each step are solved by
GMRES, GMBACK, or MINPERT. We verify the obtained theoretical results
on numerical examples performed on two test problems (Section 5), and we
end the paper with concluding remarks.

Throughout the paper, we consider the Euclidean norm (denoted by
�� · ��2) and an arbitrary given norm on �N (denoted by �� · ��), together with
their induced operator norms. We use also the Frobenius norm of a matrix
Z ∈ �MBN, defined as

��Z ��FG1tr (ZZt ).

We use the column notation for vectors; when we write vectors (or matrices)
inside square brackets, we consider the matrix containing on columns those
vectors (or the columns of those matrices). The same convention is used
when joining rows. As usual, the vectors ei , iG1, . . . , n, form the standard
basis in �n, n being clear from the context.

2. Convergence Results for Inexact Perturbed Newton Methods

The common conditions for the local convergence analysis of the New-
ton method are Condition (C1) and the following additional conditions:

(C2) The mapping F is differentiable on a neighborhood of x* and F ′
is continuous at x*.

(C3) The Jacobian F ′(x*) is nonsingular.

These conditions ensure that x* is a point of attraction for the Newton
method; i.e., there exists (H0 such that (xk )k¤0 given by the Newton method
converges to x* for any initial approximation x0∈ �N with ��x0Ax*��F(.



JOTA: VOL. 108, NO. 3, MARCH 2001 547

Moreover, the convergence is q-superlinear3; see Ref. 2, Theorem 10.2.2 and
Ref. 10, Theorem 4.4.

In the convergence analysis of the (IPNM) iterations, we assume that:

(C4) The perturbations ∆k are such that the matrices F ′(xk )C∆k are
nonsingular for kG0, 1, . . . .

Though different in notation, in fact this condition is similar to the
one considered for the quasi-Newton iterates, which requires a sequence of
invertible matrices (Bk )k¤0 .

The following sufficient condition for the convergence of the (INM)
was proved by Dembo, Eisenstat, and Steihaug (Ref. 1).

Theorem 2.1. See Ref. 1. Assume Conditions (C1)–(C3) and
ηk⁄ηmaxFtF1, kG0, 1, . . . . There exists (H0 such that, if ��x0Ax*��⁄( ,
then the sequence of the (INM) iterates (xk )k¤0 satisfying (2) converges to
x*. Moreover, the convergence is linear, in the sense that

��xkC1Ax*��∏⁄ t ��xkAx*��∏ , kG0, 1, . . . ,

where ��y ��∏G��F ′(x*)y ��.

Using this theorem, we obtain the following convergence results for the
(IPNM).

Theorem 2.2. Assume Conditions (C1)–(C4) and ηk⁄ηmaxFtF1,
kG0, 1, . . . . There exists (H0 such that, if ��x0Ax*��⁄( and

��∆k [F ′(xk )C∆k ]
−1F (xk )C{IA∆k [F ′ (xk )C∆k ]

−1}(δkCr̂k )��⁄ηk ��F (xk )��,

for kG0, 1, . . . , then the sequence of the (IPNM) iterates (xk )k¤0 converges
to x*, the convergence being linear,

��xkC1Ax*��∏⁄ t ��xkAx* ��∏ , kG0, 1, . . . .

Proof. The (IPNM) can be viewed as an (INM) with

skG−[F ′(xk )C∆k ]
−1F (xk )C[F ′ (xk )C∆k ]

−1(δkCr̂k ),

F ′(xk )skG−∆kskAF (xk )CδkCr̂k

G−F (xk )C∆k [F ′ (xk )C∆k ]
−1F (xk )

−∆k [F ′ (xk )C∆k ]
−1(δkCr̂k )CδkCr̂k

G−F (xk )C∆k [F ′ (xk )C∆k ]
−1F (xk )

C{IA∆k [F ′ (xk )C∆k ]
−1}(δkCr̂k ).

3For definitions and results concerning convergence orders, see Ref. 2, Chapter 9 and also
Refs. 10, 25.
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Denoting

rkG∆k [F ′ (xk )C∆k ]
−1F (xk )C{IA∆k [F ′(xk )C∆k ]

−1}(δkCr̂k ), (3)

the conclusion follows from Theorem 2.1. �

Corollary 2.1. Assume Conditions (C1)–(C4). There exists (H0 such
that, if ��x0Ax*��⁄( and

��∆k [F ′ (xk )C∆k ]
−1��⁄q1F1, kG0, 1, . . . ,

��δk ��C��r̂k ��⁄ [ηk�(1Cq1)]��F (xk )��,

where ηk⁄q2F1Aq1, kG0, 1, . . . ,

then the sequence of the (IPNM) iterates (xk )k¤0 converges to x*. Moreover,
the convergence is linear,

��xkC1Ax* ��∏⁄ t ��xkAx* ��∏ , kG0, 1, . . . ,

where tGq1Cq2.

Proof. The proof is obtained easily from the previous result making
use of the hypotheses. �

Remark 2.1. The idea of reducing certain perturbed Newton methods
to (INM) iterations, which is used in the proof of Theorem 2.2, can be
found in the work of several authors; see for example Refs. 9–10 and 26.
The inexact secant methods considered by us in Ref. 27 are in fact instances
of the (IPNM) model, but it was Ref. 28 that inspired us to consider the
(IPNM).

3. Convergence Orders of Inexact Perturbed Newton Methods

Stronger conditions imposed on the continuity of F ′ at x* offer higher
convergence orders for the Newton method. Namely, if F ′ is Hölder con-
tinuous at x* with exponent p, p ∈ (0, 1], i.e., if there exist (H0 and L¤0
such that

��F ′ (x)AF ′ (x*)��⁄L ��xAx*�� p, for ��xAx*��⁄( ,

then the Newton method converges locally with q-order at least 1Cp; see
Ref. 2, Theorem 10.2.2 and Ref. 10, Theorem 4.4.

For the inexact Newton methods, Dembo, Eisenstat, and Steihaug
proved the following result.
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Theorem 3.1. See Ref. 1. Assume that Conditions (C1)–(C3) hold
and that the inexact Newton iterates (xk )k¤0 converge to x*. Then, xk→x*
q-superlinearly if and only if

��rk ��Go(��F (xk )��), as k→S.

Moreover, if F ′ is Hölder continuous at x* with exponent p, p ∈ (0, 1], then
xk→x* with q-order at least 1Cp if and only if

��rk ��GO (��F (xk )��1Cp), as k→S.

We obtain the following result for the inexact perturbed Newton
methods.

Theorem 3.2. Assume that Conditions (C1)–(C4) hold and that the
iterates (xk )k¤0 given by the (IPNM) converge to x*. Then, xk→x* q-super-
linearly if and only if

��∆k [F ′ (xk )C∆k ]
−1F (xk )C{IA∆k [F ′ (xk )C∆k ]

−1}(δkCr̂k )��Go(��F (xk )��),

as k→S. Moreover, if F ′ is Hölder continuous at x* with exponent p, then
xk→x* with q-order at least 1Cp if and only if

��∆k [F ′ (xk )C∆k ]
−1F (xk )C{IA∆k [F ′ (xk )C∆k ]

−1}(δkCr̂k )��GO (��F (xk )��1Cp ),

as k→S.

Proof. The proof is obtained from the previous theorem by using
(3). �

In the following result, we characterize the convergence orders of the
(IPNM) iterates in terms of the rate of convergence to zero of residuals and
perturbations.

Corollary 3.1. Assume that:

(a) Conditions (C1)–(C4) hold;
(b) ∆k→0, δk→0, r̂k→0, as k→S;
(c) the sequence (xk )k¤0 given by the (IPNM) converges to x*.

In addition, if

��δk ��Go(��F (xk )��), � �r̂k ��Go(��F (xk )��), as k→S,

then, xk→x* q-superlinearly.
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Under the same assumptions (a)–(c), if additionally F ′ is Hölder con-
tinuous at x* with exponent p, and if

��∆k ��GO (��F (xk )�� p), ��δk ��GO (��F (xk )��1Cp ),

�� r̂k ��GO (��F (xk )��1Cp), as k→S,

then xk→x* with q-order at least 1Cp.

The corresponding results for the r-convergence orders of the (IPNM)
iterates may be stated in a similar manner, taking into account the existing
results for the (INM); see Ref. 1, Theorem 3.4 and Corollary 3.5.

4. Applications to Krylov Solvers Based on Backward Error Minimization
Properties

Consider the nonsymmetric linear system

AxGb, (4)

with A ∈ �NBN nonsingular and b ∈ �N. The Krylov methods for solving such
a system when the dimension N is large are based on the Krylov subspaces,
defined for any initial approximation x0∈ �N as

KmGKm (A, r0)Gspan{r0, Ar0, . . . , A
mA1r0},

where

r0GbAAx0

is the initial residual and m ∈ {1, . . . , N}.
The normwise backward error of an approximate solution x̃ of (4) was

introduced by Rigal and Gaches (Ref. 29) and is defined by

Π(x̃)Gmin{(: (AC∆A )x̃GbC∆b , ��∆A ��F⁄( ��E ��F , ��∆b ��2⁄( �� f ��2},

where the parameters E ∈ �NBN and f ∈ �N are arbitrary. The value of Π(x̃)
is

Π(x̃)G��bAAx̃��2�(��E ��F · ��x̃��2C�� f ��2),

and the minimum is attained by the backward errors

∆AG[��E ��F · ��x̃��2�(��E ��F · ��x̃��2C�� f ��2)](bAAx̃)zt, with zG(1���x̃��22)x̃,

∆bG−[�� f ��2�(��E ��F · ��x̃��2C�� f ��2)](bAAx̃).
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We shall analyze the behavior of the following three Krylov solvers
when used for the linear systems arising in the Newton methods: GMRES,
GMBACK, MINPERT. Each of these solvers is based on backward error mini-
mization properties, as we shall see.

In order to use some existing notations, we prefer to denote hereafter
by y* the solution of the nonlinear system (1) and by yk the iterates from
the Newton methods, using x in the involved linear systems.

4.1. Newton–GMRES Method. Given an initial approximation x0∈ �N,
the GMRES method of Saad and Schultz (Ref. 30) uses the Arnoldi process
(see Ref. 31) to construct an orthonormal basis {û1, . . . , ûm} in the Krylov
subspace Km . The approximation xGM

m ∈ x0CKm is then determined such
that

��bAAxGM
m ��2G min

xm ∈ x0CK m

��bAAxm ��2. (5)

Kasenally has noted in Ref. 32 that the minimizing property of xGM
m

may be expressed in terms of the backward errors, namely,

min
xm ∈ x0CK m

��bAAxm ��2G min
xm ∈ x0CK m

{��∆b ��2: AxmGbA∆b};

i.e., xGM
m minimizes over x0CKm the backward error ∆b , assuming ∆AG0.

The solution xGM
m is determined roughly in the following way (see also

Ref. 33):

(i) Arnoldi Process. Determine VmG[û1, . . . , ûm ] ∈ �NBm and the
upper Hessenberg matrix Hr m ∈ �(mC1)Bm.

(ii) GMRES Solution. Find the exact solution yGM
m of the following

least squares problem in �m:

min
ym ∈ �

m
��βe1AHr mym ��2,

where βG��r0��2.
Set xGM

m Gx0CVmyGM
m .

The GMRES method is used in an iterative fashion. Saad and Schultz
proved that, at each step, the solution xGM

m is uniquely determined and that
the algorithm breaks down in the Arnoldi method only if the exact solution
has been reached. Moreover, the process terminates in at most N steps. In
the results presented below, we shall assume, as usually, that the Krylov
methods do not continue after the exact solution has been determined.

First, we introduce some notations for the restarted GMRES iterations
in order to express the relations which they satisfy.
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Since only small values of m are attractive in practice, an upper bound
m̄ ∈ {1, . . . , NA1} is usually fixed for the subspace dimensions. If after m̄
steps the computed solution does not have a sufficiently small residual, the
GMRES method is restarted, taking for the initial approximation the last
computed solution. We denote by xGM(0)

m , m ∈ {1, . . . , m̄}, the first m̄ solu-
tions, by xGM(1)

m , m ∈ {1, . . . , m̄}, the m̄ solutions from the first restart, and
so on. The value of the initial approximation x0 will be clear from the con-
text. For the nonrestarted version, we shall use the common notations
xGM

m , while for a generic GMRES solution4, we shall simply write xGM; the
corresponding notations for the kth correction from a Newton–GMRES

method will be sGM
k,m [resp. sGM

k ].
The choice x0G0 in the Krylov solvers is a popular one when no better

guess is known; see e.g. Refs. 26 and 34–35. With the above notation, the
following result is obtained immediately from the properties of the GMRES

solutions. Certain affirmations from this result are more or less explicitly
stated in some papers dealing with GMRES; see for example Refs. 26 and
36–37.

Proposition 4.1. Consider the linear system (4) and the initial approxi-
mation x0G0. Then, the following statements are true:

(i) For any m ∈ {1, . . . , N}, the residual rGM
m of the GMRES solution

satisfies

��rGM
m ��2⁄ ��b��2.

Moreover, the inequality is strict if and only if the solution xGM
m

is nonzero.
(ii) The residuals associated to the N successive solutions satisfy

0G��rGM
N ��2⁄ ��rGM

NA1��2⁄ · · ·⁄ ��rGM
1 ��2⁄ ��b��2.

The inequality between the norms of two consecutive residuals
is strict if and only if the corresponding GMRES solutions are
distinct.

(iii) For any fixed upper bound m̄ ∈ {1, . . . , NA1}, the residuals of
the restarted GMRES method satisfy

· · ·⁄ ��rGM(lC1)
1 ��2⁄ ��rGM(l )

m̄ ��2⁄ · · ·⁄ ��rGM(l )
1 ��2

⁄ ��rGM(lA1)
m̄ ��2⁄ · · ·⁄ ��rGM(0)

1 ��2⁄ ��b��2.

4In such a case, we assume that the initial approximation x0∈ �N, the upper bound m̄ ∈
{1, . . . , NA1}, the number of (eventual) restarts l¤0, and the number of (final, if l¤1) iter-
ations may be arbitrary.
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The inequality between the norms of two consecutive residuals is strict if
and only if the corresponding GMRES solutions are distinct; the residuals
may eventually get to zero or may indefinitely stagnate, depending on the
problem.

Considering the linear systems from the Newton method, we get easily
the following proposition.

Proposition 4.2. Let y ∈ D be an element for which the derivative F ′(y)
is nonsingular. Applying the GMRES method with x0G0 to the linear system
F ′(y)sG−F (y), then for all m ∈ {1, . . . , N}, the residual satisfies

��rGM
m ��2⁄ ��F (y)��2.

Moreover, the above inequality is strict if and only if the correction sGM
m is

nonzero.

We have chosen to state the result corresponding only to part (i) of
Proposition 4.1. The other results are similarly enounced.

Brown (Ref. 26) and Brown and Saad (Ref. 38) considered solving (1)
by global minimization,

min
y ∈ �

N
f (y)Gmin

y ∈ �
N
F (y)tF (y),

when F: �N→�N. They obtained that any nonzero correction from a certain
step of the Newton–GMRES method with x0G0 in GMRES is a descent direc-
tion for the above minimization problem. Now, we are able to describe this
positive behavior in terms of the distance to the solution.

Theorem 4.1. Assume that the mapping F satisfies Conditions
(C1)A(C3), and consider a current approximation yc ≠ y* for y*. Let sGM

be a nonzero approximate solution of the linear system F ′(yc )sG−F (yc )
provided by GMRES, assuming the initial guess x0G0. Let y+GycCsGM,
denote η G��rGM��2���F (yc )��2, and take t ∈ (η , 1). If yc is sufficiently close to
y*, then

��y+Ay* ��∏⁄ t ��ycAy* ��∏ ,

where ��y ��∏G��F ′ (y*)y��2.

Proof. The thesis can be proved easily with slight modifications of the
proof of Theorem 2.1, given in Ref. 1. �

The above result says that, when using GMRES (with x0G0) in the
Newton method, any nonzero correction improves the current outer
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approximation, provided that the approximation is sufficiently good.
Though this theorem guarantees a nonincreasing curve for the errors of the
Newton–GMRES iterations starting from a sufficiently good approximation,
the local convergence is not guaranteed. It is sufficient to notice that, con-
sidering a sequence obeying at each step the hypotheses of the above result,
there may appear a situation when the set of forcing terms has 1 as accumu-
lation point, in which case Theorem 2.1 cannot be applied.

The following theoretical example shows that, when the dimensions of
the Krylov subspaces are smaller than N, the outer iterations may stagnate at
the initial approximation y0 ≠ y*, no matter how close to y* we choose y0.

Example 4.1. Consider

F: �N→�N, F (y)G[y(N), y(1), y(2), . . . , y(NA1) ]t,

yG[y(1), . . . , y(N) ]t ∈ �N,

for which

F ′(y) ≡ �
0 1

1 · · ·
· · ·

· · ·
1 0

�G[e2, e3, . . . , eN , e1]=:A.

The Newton method for solving F (y)G0 should yield the unique solution
y*G0 in one iteration for any y0∈ �N, whenever the corresponding linear
system is solved exactly. However, when the correction is determined
approximately, the situation changes, and we may use the (INM) setting.

Taking y0G−heN , for some arbitrarily small h ≠ 0, we must solve

F ′ (y0)sG−F (y0),

i.e.,

AxGb, with bGhe1.

Applying m⁄NA1 steps of the Arnoldi process with x0G0, we obtain VmG

[e1, . . . , em ] ∈ �NBm and Hr mG[e2, . . . , emC1 ] ∈ �(mC1)Bm.
The GMRES solution is given by (see Refs. 36 and 39)

xGM
m Gx0CVm (Hr t

mHr m )−1Hr t
mV t

mC1b,

such that

V t
mC1bGhe1, Hr t

mhe1G0,

and so

xGM
m GsGM

0,m G0, for all mG1, . . . , NA1.
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We also note that the restarting version of the GMRES yields the same result
whenever x0G0 and m̄, m⁄NA1.

This theoretical example shows that the dimension of the Krylov sub-
spaces may sometimes be crucial for the efficiency of the Newton–GMRES

method, and that the use of the restarted version of GMRES cannot over-
come the difficulties. The stagnation of the GMRES algorithm was first
reported in Ref. 36 (where A was as above and b stood for e1), but we are
not aware of any extension to a (non)linear mapping in order to show such
stagnation of the Newton–GMRES method.

4.2. Newton–GMBACK Method. The GMBACK algorithm for solving
the linear system (4) was introduced by Kasenally in Ref. 32. Given x0∈ �N,
it computes a vector xGB

m ∈ x0CKm which minimizes the backward error in
the matrix A, assuming ∆bG0,

min
xm ∈ x0CK m

��∆A ��F , s.t. (AA∆A )xmGb.

The following steps are performed for determining xGB
m .

(i) Arnoldi Process. Compute the matrices Vm and Hr m .
(ii) GMBACK Solution. Execute Steps (a), (b), (c), (d) below.

(a) Let βG��r0��2,

ĤmG[−βe1, Hr m ] ∈ �(mC1)B(mC1),

ĜmG[x0, Vm ] ∈ �NB(mC1),

PGĤ t
mĤm ∈ �(mC1)B(mC1),

QGĜ t
mĜm ∈ �(mC1)B(mC1).

(b) Determine an eigenvector umC1 corresponding to the small-
est eigenvalue λ GB

mC1 of the generalized eigenproblem PuG
λQu.

(c) If the first component u(1)
mC1 is nonzero, compute the vector

yGB
m ∈ �m by scaling umC1 such that

� 1

yGB
m

�G[1�u(1)
mC1 ]umC1 .

(d) Set xGB
m Gx0CVmyGB

m .

This algorithm may lead to two possible breakdowns, either in the
Arnoldi method or in the scaling of umC1 . As in the case of GMRES, the
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first breakdown is a happy breakdown, because the solution may be deter-
mined exactly using Hr m and Vm . The second breakdown appears when all
the eigenvectors associated to λ GB

mC1 have the first component zero, the inevi-
table divisions by zero leading to uncircumventible breakdowns. In such
case, either m is increased or the algorithm is restarted with a different initial
approximation x0. We shall assume in the following analysis that xGB

m exists.
Kasenally proved that, for any x0∈ �N and m ∈ {1, . . . , N}, the back-

ward error ∆GB
A,m corresponding to the GMBACK solution satisfies

��∆GB
A,m��FG1λ GB

mC1 . (6)

The Newton–GMBACK iterates may be written in two equivalent ways,
taking into account the properties of the Krylov solutions,

F ′ (yk )s
GB
k G−F (yk )CrGB

k ,

[F ′ (yk )A∆GB
Ak ]sGB

k G−F (yk ),

kG0, 1, . . . , y0∈ D, where we considered

AkGF ′ (yk ) and bkG−F (yk ).

There are three results which may be applied to characterize the high con-
vergence orders of these sequences (the corresponding statements are left to
the reader): Theorem 2.1 of Dembo, Eisenstat, and Steihaug; the results of
Dennis and Moré for the quasi-Newton methods (see Refs. 17–18); and
Theorem 2.2 for the (IPNM) iterates, in which we must take δkGr̂kG0,
kG0, 1, . . . . Naturally, these results must be equivalent, but here we do not
analyze this aspect.

Concerning the sufficient conditions, the convergence orders of the
Newton–GMBACK method may be controlled by the computed eigenvalues
λ GB

k from GMBACK.

Theorem 4.2. Consider the sequence of Newton–GMBACK iterates
ykC1GykCsGB

k , where sGB
k satisfies

[F ′ (yk )A∆GB
Ak ]sGB

k G−F (yk ), kG0, 1, . . . .

Assume the following:

(a) Conditions (C1)–(C4) hold.
(b) The derivative F ′ is Hölder continuous with exponent p at y*.
(c) The sequence (yk )k¤0 converges to y*.

Moreover, if

1λ GB
k GO (��F (yk )��p ), as k→S,

then the Newton–GMBACK iterates converge with q-order at least 1Cp.
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Proof. The proof follows from Corollary 3.1, taking into account for-
mula (6), the inequality ��Z ��2⁄ ��Z ��F , true for all Z ∈ �NBN, and the fact that
all the norms are equivalent on a finite-dimensional normed space. �

We are interested now if the curve of the Newton–GMBACK errors is
nonincreasing when starting with a sufficiently good approximation. In the
following, we shall construct an example which shows that, unlike the
Newton–GMRES case, this property is not generally shared by the Newton–
GMBACK method when GMBACK is used in the nonrestarted version.

Example 4.2. Consider the system F (y)G0, with

F: �N→�N,

F (y)G[y (1)Cy (N ), y (1), y (2), . . . , y (NA1) ] t,

yG[y (1), . . . , y (N) ] t ∈ �N,

having the unique solution y*G0. For all y ∈ �N, the derivative of F is
given by

F ′ (y) ≡ [e1Ce2, e3, . . . , eN , e1]=:A.

Taking y0G−heN with arbitrarily small h ≠ 0, we must solve

F ′(y0)sG−F (y0),

or equivalently,

AxGb, with bGhe1.

Applying m⁄NA1 steps of the Arnoldi process with x0G0, we obtain
successively

VmG[e1, . . . , em ] ∈ �NBm,

Hr mG[e1Ce2, e3, . . . , emC1] ∈ �(mC1)Bm,

PGĤ t
mĤmG[h2e1Ahe2, 2e2Ahe1, e3, . . . , emC1],

QGĜ t
mĜmG[0, e2, . . . , emC1] ∈ �(mC1)B(mC1).

The eigenpair (umC1 , λ GB
mC1) of

PuGλQu

is determined uniquely by

umC1G[1�h, 1, 0, . . . , 0] t, λ GB
mC1G1.
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It follows that

yGB
m Ghe1∈ �m,

and the GMBACK, solution is

xGB
m Ghe1,

such that, when N¤3,

��y1Ay*��2G12 �h�H�h�G��y0Ay* ��2.

4.3. Newton–MINPERT Method. The MINPERT method for solving (4)
was introduced by Kasenally and Simoncini in Ref. 40. Given an initial
approximation x0∈ �N, it computes an element xMP

m ∈ x0CK m which
minimizes the joint backward error,

min
xm ∈ x0CK m

��[∆A , ∆b ]��F , s.t. (AA∆A )xmGbC∆b . (7)

In other words, xMP
m minimizes the distance from the original system to the

nearest one that an approximation xm ∈ x0CK m actually satisfies. The above
minimization problem may also be viewed as a total least squares problem
in the Krylov subspace (see Ref. 40).

The algorithm is similar to GMBACK, the only difference being given
by the computation of the matrices from the eigenproblem

PuGλQu.

The following is a sketch of the steps performed by MINPERT.

(i) Arnoldi Process. Compute the matrices Vm and Hr m .
(ii) MINPERT Solution.

(a) Let βG��r0��2,

ĤmG[−βe1, Hr m ] ∈ �(mC1)B(mC1),

ĜmG�x0

1

Vm

0 � ∈ �(NC1)B(mC1),

PGĤ t
mĤm ∈ �(mC1)B(mC1),

QGĜ t
mĜm ∈ �(mC1)B(mC1).

(b) Determine an eigenvector umC1 corresponding to the small-
est eigenvalue λ MP

mC1 of the generalized eigenproblem PuG
λQu.
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(c) If the first component u(1)
mC1 is nonzero, compute the vector

yMP
m ∈ �m by scaling umC1 such that

�1

yMP
m

�G[1�u(1)
mC1 ]umC1 .

(d) Set xMP
m Gx0CVmyMP

m .

The remarks concerning the breakdowns of the GMBACK method hold
also for MINPERT.

Kasenally and Simoncini proved that, for any x0∈ �N and m ∈
{1, . . . , N}, the following relations hold:

��[∆MP
A,m , ∆MP

b,m ]��FG1λ MP
mC1, (8)

��rMP
m ��2G1λ MP

mC1��[(xMP
m ) t, 1] t ��2, (9)

where ∆MP
A,m , ∆MP

b,m and rMP
m represent the backward errors and the residual

corresponding to the MINPERT solution xMP
m .

We shall prove for MINPERT a result somehow similar to Proposition
4.1.

Proposition 4.3. Consider the linear system (4), the initial approxi-
mation x0G0, and an arbitrary value m ∈ {1, . . . , N}. If there exists a MIN-

PERT solution xMP
m , then its joint backward error satisfies

��[∆MP
A,m , ∆MP

b,m ]��F ⁄ ��b��2.

Proof. When x0G0, as noticed in Ref. 40, we are led to a regular
eigenproblem in the MINPERT algorithm, since QGImC1 . The boundedness
of the Rayleigh quotient then implies

λ MP
mC1G min

z ∈ �
mC1

ztPz�ztz⁄e t
1Pe1�e t

1e1Ge t
1Ĥ

t
mĤme1Gβ2G��b��22 ;

so, by (8), the conclusion is immediate. �

The other two affirmations similar to those from Proposition 4.1 may
be stated correspondingly with the single remark that, since the solution of
the minimization problem (7) may not be uniquely determined, the
inequality between two consecutive joint backward errors may not be strict
even if the consecutive solutions xMP

m and xMP
mC1 are distinct.

We also note that, when the initial approximation in GMBACK is taken
x0G0, one cannot similarly use the vector e1 in the Fisher result [see, e.g.,
Ref. 41, Corollary VI.1.16, which says that λ GB

mC1Gminz ∈ �
mC1 ztPz�ztQz] in
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order to bound λ GB
mC1 by β2, since in this case

e t
1Qe1G0;

i.e., e1 is an eigenvector corresponding to the infinite eigenvalue λ 1G+S.
Such a result could not be expected to hold in general, because by Corollary
3.1 it would imply that, for an arbitrary mapping F satisfying Conditions
(C1)–(C3) and with Lipschitz derivative, the Newton–GMBACK iterations
with x0G0 in GMBACK and obeying Condition (C4) converge locally with
q-order 2 even for one-dimensional Krylov subspaces.

The convergence orders of the Newton–MINPERT iterates may be
characterized by (9) in terms of the computed eigenvalues λ MP

k .

Theorem 4.3. Assume that Conditions (C1)–(C3) hold, that the
derivative F ′ is Hölder continuous with exponent p at y*, and that
the sequence (yk )k¤0 given by the Newton–MINPERT iterations ykC1G

ykCsMP
k , with

F ′ (yk )s
MP
k G−F (yk )CrMP

k , kG0, 1, . . . , y0∈ D,

converges to y*. Then, (yk )k¤0 converges with q-order at least 1Cp if and
only if

1λ MP
k GO (��F (yk )��1Cp ), as k→S.

The direct application of Proposition 4.3 to the study of the mono-
tonicity of the Newton–MINPERT errors leads to a result similar to Theorem
4.1, but which requires some additional conditions.

Theorem 4.4. Assume that the mapping F satisfies Conditions (C1)–
(C3), and consider a current approximation yc ≠ y* for y*. Let sMP be a
nonzero approximate solution of the linear system F ′ (yc )sG−F (yc ) pro-
vided by MINPERT with the initial guess x0G0. Let

y+GycCsMP.

If

η G1λ MP ��[(sMP) t, 1] t��2���F (yc )��2F1,

and if yc is sufficiently close to y*, then

��y+Ay* ��∏⁄ t ��ycAy* ��∏ , for all t ∈ (η , 1),

where �� y��∏G��F ′ (y*)y ��2.

The following example shows that the Newton–MINPERT iterates may
stagnate no matter how close to the solution y* we choose y0.
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Example 4.3. Consider the mapping F from Example 4.1, which leads
us again to solving the linear system AxGb. The MINPERT method with
x0G0 and m ∈ {1, . . . , NA1} yields the diagonal matrix P ∈ �(mC1)B(mC1),
with diag(P)G[h2, 1, . . . , 1] and QGImC1 , such that, for any h with 0F
�h �F1, we get

λ MP
mC1Gh2 and umC1Ge1.

Then, the unique choice yMP
m G0 follows, and so sMP

0,m G0.

Remark 4.1. This example also shows that, for the linear systems
AxGb above, the MINPERT method behaves identically with GMRES; i.e.,
for x0G0 and m̄, m ∈ {1, . . . , NA1}, it cannot improve the accuracy of the
approximate solution, even in the restarted version. The systems with the
same matrix A, but with bGhe1, �h �H1, constitute some examples when the
MINPERT method for a linear system leads to uncircumventible break-
downs. The stagnations and the uncircumventible breakdowns of MINPERT

were theoretically known to be possible, but we had not encountered con-
crete examples before.

We end the theoretical considerations by applying a result which relates
the GMRES and MINPERT approximations to the Newton iterations. How-
ever, we do not tackle here this problem in its general setting nor do we
analyze the conditions required in this result.

Kasenally and Simoncini proved that the difference between the
GMRES and MINPERT solutions may be bounded under certain
circumstances.

Theorem 4.5. See Ref. 40. Consider the same arbitrary elements m ∈
{1, . . . , N} and x0∈ �N in the GMRES and MINPERT methods for solving
the linear system (4). Denote by σ2

m the smallest eigenvalue of Hr t
mHr m , i.e.,

the smallest squared singular value of Hr m , and assume that σ2
m ≠ λ MP

mC1 .
Then,

��xMP
m AxGM

m ��2⁄ [λ MP
mC1�(σ2

mAλ MP
mC1)]��xGM

m ��2.

An auxiliary result proved by these authors shows that the eigenvalues
determined at the step m interlace in the following way:

λ MP
i ¤σ2

i ¤λ MP
iC1 , for iG1, . . . , m.

The bound from the above theorem is large whenever σ2
m is close to λ MP

mC1

and the result cannot be applied when σ2
mGλ MP

mC1 ; such a situation arises
for example when λ MP

mC1 is a repeated eigenvalue.
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Theorem 4.5 may determine theoretical possibilities when GMRES and
MINPERT have the same asymptotical behavior when used in a converging
Newton method.

Theorem 4.6. Assume that Conditions (C1)–(C3) hold and that the
sequence (yGM

k )k¤0 given by the Newton–GMRES method converges to y*,
where the elements from the GMRES algorithm are arbitrary at each outer
step. Denote by sGM

k the corrections obtained from the linear systems

F ′ (yGM
k )sG−F (yGM

k ),

and consider the approximate solutions sMP
k of these linear systems obtained

with MINPERT, which is assumed to use the same initial approximations,
the same subspace dimensions, and the same number of restarts as GMRES.
If σ2

k ≠ λ MP
k , for kG0, 1, . . . , and λ MP

k Go(σ2
k), as k→S, then GMRES and

MINPERT yield asymptotically the same normalized corrections:

[1���sGM
k ��2]sGM

k A[1���sMP
k ��2]sMP

k →0, as k→S.

The same result holds inverting the role of GMRES and MINPERT.

Proof. The hypotheses of the theorem imply that

λ MP
k →0, as k→S.

For the nonrestarted version of the Krylov solvers, the affirmation is a
straightforward application of Theorem 4.5, while for the restarted version,
the conclusion is obtained by an inductive argument on the number of
restarts from each outer step. �

5. Numerical Examples

We shall consider two test problems from Refs. 34 and 42, that will
provide some nonlinear systems in �N. We shall apply to them the studied
Newton–Krylov methods. The Krylov solvers are considered in the non-
restarted version and the initial guess is taken 0 in both the inner and outer
iterations. We are interested in the behavior of the magnitude of the back-
ward errors of these methods and in verifying theoretical results; therefore,
we are not aiming to implement some efficient methods for solving the prob-
lems under consideration.

5.1. Bratu Problem. Consider the nonlinear partial differential
equation

A∆uCα uxCλ euGf,
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over the unit square of �2, with Dirichlet boundary conditions. As men-
tioned in Refs. 34 and 42, this is a standard problem, a simplified form of
which is known as the Bratu problem (see Ref. 43). We have discretized by
means of 5-point finite differences [respectively, by means of central finite
differences] on a uniform mesh, obtaining a system of nonlinear equations
of size NG(nA2)2, where n is the number of mesh points in each direction.
As in Ref. 34, we took f such that the solution of the discretized problem is
the constant unity. We have considered

αG10, λG1, NG1024, mG10.

The runs were made on a PC, using MATLAB Version 4.0. The symbol �� · ��
denotes either the Euclidean norm or the Frobenius norm, and ek , Fk stand
for y*Ayk , F (yk ).

Table 1 contains the results obtained by using the Newton–GMRES

method. We have also considered the corrections obtained with MINPERT

at each step, denoting by ak the norm of the difference (1���sGM
k ��)sGM

k A

(1���sMP
k ��)sMP

k ; the corrections sMP
k were computed only for the comparison.

It can be seen that the normalized corrections agree the closer the iterations
get to the solution.

Table 2 contains the results obtained by using the Newton–GMBACK

method. We notice the rather constant magnitudes of ∆GB
Ak , which do not

approach zero even when the iterates are close to the solution.
In Table 3, we have denoted

bkG��sGM
k,10AsMP

k,10 ��2���sGM
k,10 ��2, ckGλ MP

k,10�(σ2
k,10Aλ MP

k,10).

The bounds ck seem to be tight here for bk . As soon as the iterations
approach the solution, the inequalities from Theorem 4.5 cease to hold
numerically; we believe that this is due to the different types of errors which

Table 1. Newton–GMRES applied to the Bratu problem.

k ��ek �� ��Fk ��2 ��rk �� ak k ��ek �� ��Fk ��2 ��rk �� ak

0 3e+1 1e+2 9e−1 4e−2 11 3e−4 1e−10 8e−6 1e−9
1 2e+1 9e−1 5e−1 3e−2 12 2e−4 7e−11 2e−6 4e−11
2 1e+1 3e−1 4e−1 2e−2 13 3e−5 8e−12 7e−7 4e−12
3 1e+1 1e−1 2e−1 9e−3 14 1e−5 5e−13 4e−7 3e−12
4 6e+0 8e−2 3e−2 9e−5 15 1e−5 2e−13 2e−7 3e−13
5 1e−1 1e−3 6e−3 2e−4 16 1e−6 4e−14 2e−8 1e−14
6 5e−2 4e−5 2e−3 5e−5 17 5e−7 6e−16 1e−8 5e−14
7 2e−2 5e−6 6e−4 2e−6 18 4e−7 1e−16 6e−9 3e−15
8 1e−2 4e−7 3e−4 2e−6 19 8e−8 4e−17 5e−10 2e−15
9 1e−2 1e−7 1e−4 2e−7 20 9e−9 2e−19 2e−10 4e−14

10 1e−3 2e−8 1e−5 4e−10 21 6e−9 5e−20 9e−11 2e−16
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Table 2. Newton–GMBACK applied to the Bratu problem.

k ��ek �� ��Fk �� ��∆GB
Ak �� rk k ��ek �� ��Fk �� ��∆GB

Ak �� rk

0 3e+1 1e+1 6e−2 1e+0 11 1e−4 2e−5 4e−2 4e−6
1 2e+1 1e+0 5e−2 7e−1 12 8e−5 4e−6 5e−2 3e−6
2 1e+1 7e−1 6e−2 5e−1 13 3e−5 3e−6 1e−2 5e−7
3 9e+0 5e−1 6e−2 3e−1 14 8e−6 5e−7 6e−2 3e−7
4 4e+0 3e−1 2e−2 7e−2 15 4e−6 3e−7 2e−2 8e−8
5 1e+0 7e−2 4e−2 6e−2 16 1e−6 8e−8 5e−2 5e−8
6 5e−1 6e−2 2e−2 1e−2 17 5e−7 5e−8 2e−2 1e−8
7 2e−1 1e−2 1e−2 4e−3 18 2e−7 1e−8 3e−2 6e−9
8 1e−2 4e−3 5e−2 5e−4 19 3e−8 6e−9 2e−2 7e−10
9 4e−3 5e−4 4e−2 9e−5 20 1e−8 7e−10 2e−2 3e−10

10 2e−3 9e−5 1e−2 2e−5 21 1e−9 3e−10 1e−2 1e−11

Table 3. Newton–MINPERT applied to the Bratu problem.

k ��ek �� ��Fk �� 1λ MP
k,10 ��Fk ��2 ��rk �� bk ck

0 3e+1 1e+1 6e−2 1e+2 1e+0 8.3594e−2 1.0364e−1
1 2e+1 1e+0 5e−2 1e+0 7e−1 6.6518e−1 6.7180e−1
2 1e+1 7e−1 6e−2 5e−1 5e−1 7.3033e−1 7.3995e−1
3 9e+0 5e−1 6e−2 2e−1 3e−1 6.1259e−1 6.2053e−1
4 4e+0 3e−1 2e−2 1e−1 7e−2 4.4297e−2 4.4403e−2
5 1e+0 7e−2 3e−2 5e−3 5e−2 3.3261e−1 3.3456e−1
6 8e−1 5e−2 1e−2 2e−3 1e−2 3.0693e−2 3.0808e−2
7 3e−1 1e−2 5e−3 2e−4 5e−3 1.5905e−2 1.6004e−2
8 6e−2 5e−3 1e−3 3e−5 1e−3 2.0734e−4 2.0883e−4
9 2e−2 1e−3 7e−4 2e−6 7e−4 1.1074e−4 1.1233e−4

10 1e−2 7e−4 1e−4 5e−7 1e−4 1.0523e−5 1.0526e−5
11 2e−3 1e−4 7e−5 3e−8 7e−5 5.2230e−7 5.3930e−7
12 1e−3 7e−5 6e−6 5e−9 6e−6 2.6605e−8 2.6605e−8
13 4e−5 6e−6 1e−6 4e−11 1e−6 3.1452e−11 3.2821e−11
14 2e−5 1e−6 6e−7 1e−12 6e−7 1.6474e−10 1.6433e−10
15 9e−6 6e−7 1e−7 3e−13 1e−7 4.9880e−12 5.0888e−12
16 2e−6 1e−7 8e−8 2e−14 8e−8 1.6094e−12 1.6504e−12
17 1e−6 8e−8 1e−8 6e−15 1e−8 1.6952e−13 8.3076e−14
18 1e−7 1e−8 4e−9 1e−16 4e−9 1.2156e−14 1.7097e−15
19 1e−7 4e−9 1e−9 2e−17 1e−9 4.7003e−13 9.6014e−16
20 5e−9 1e−9 2e−11 1e−18 2e−11 2.2673e−14 2.2768e−20

have appeared in computing the eigenpairs, the Krylov approximations, and
the elements bk , ck .

5.2. Driven Cavity Flow Problem. This is a classical problem from
incompressible fluid flow. It has the following equations in the stream
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function-vorticity formulation:

ν∆ωCψyωxAψxωyG0, in Ω, (10)

A∆ψGω, in Ω, (11)

ψG0, on ∂Ω,

(∂ψ�∂n) (x, y)�
∂Ω
G�1, if yG1,

0, if 0⁄yF1,

where Ω denotes again the interior of the unit square from �2 and the
viscosity ν is the reciprocal of the Reynolds number Re. In terms of ψ alone,
(10) and (11) are replaced by

ν∆2ψCψy (∆ψ)xAψx (∆ψ)yG0, in Ω.

This equation was discretized again on a uniform mesh. We have considered
nG25, choosing the boundary conditions to be incorporated in the nonlin-
ear system. We have used the symbolic facilities offered by Maple V Release
3.0 in order to determine the discretized equations. The Reynolds number
was taken small (ReG10) and the subspace dimensions of the Krylov
methods were considered large (mG50), since the nonrestarted versions of
these methods were not efficient for this problem.

Tables 4–5 contain the results of the three Newton–Krylov methods
applied to this problem. We notice again that, close to the solution, the
computed elements bk and ck do not satisfy the inequalities bk⁄ck .

Table 4. Newton–GMRES (left) and Newton–GMBACK (right) applied to the driven
cavity problem.

k ��Fk �� ��Fk ��2 ��rk �� ak k ��Fk �� ��∆GB
Ak �� ��Fk ��2 rk

0 4e+0 2e+1 9e−1 2e−2 0 4e+0 6e−2 2e+1 9e−1
1 8e+0 7e+1 1e+0 7e−2 1 9e+0 3e−1 9e+1 1e+0
2 4e+0 2e+1 8e−1 4e−2 2 6e+0 3e−1 3e+1 1e+0
3 1e+0 3e+0 6e−1 4e−2 3 1e+0 3e−1 3e+0 9e−1
4 7e−1 5e−1 5e−1 1e−2 4 9e−1 2e−1 8e−1 8e−1

· · · · · ·
131 9e−5 8e−9 8e−5 6e−9 131 4e−5 6e−1 1e−9 2e−5
132 8e−5 7e−9 8e−5 7e−9 132 2e−5 4e−1 5e−10 3e−5
133 8e−5 6e−9 7e−5 5e−9 133 3e−5 6e−1 1e−9 2e−5
134 7e−5 6e−9 7e−5 5e−9 134 2e−5 4e−1 4e−10 3e−5
135 7e−5 5e−9 6e−5 4e−9 135 3e−5 6e−1 1e−9 1e−5
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Table 5. Newton–MINPERT applied to the driven cavity problem.

k ��Fk �� 1λ MP
k,50 ��Fk ��2 ��rk �� bk ck

0 4e+0 6e−2 2e+1 9e−1 7.0262e−2 7.8592e−2
1 9e+0 3e−1 9e+1 1e+0 3.3821e−1 3.5336e−1
2 6e+0 3e−1 3e+1 1e+0 8.0633e−1 8.2988e−1
3 1e+0 2e−1 3e+0 8e−1 1.1452e+0 1.1887e+0
4 8e−1 2e−1 7e−1 7e−1 1.6037e+0 1.6438e+0

· · ·
131 1e−5 1e−5 2e−10 1e−5 4.0286e−8 4.0292e−8
132 1e−5 1e−5 2e−10 1e−5 3.2414e−9 3.2489e−9
133 1e−5 1e−5 2e−10 1e−5 3.6246e−8 3.6241e−8
134 1e−5 1e−5 1e−10 1e−5 2.4452e−9 2.4576e−9
135 1e−5 1e−5 1e−10 1e−5 2.1203e−8 2.1201e−8

In Fig. 1, we have plotted on a semilog scale the evolution of ��Fk �� for
the three methods. The first 150 steps were considered. Notice the monotone
behavior of Newton–GMRES and Newton–MINPERT starting from certain
steps, and also notice the nonmonotone behavior of Newton–GMBACK.

Fig. 1. Newton–GMRES (dash-dot line), Newton–GMBACK (solid line), and Newton–
MINPERT (dotted line) applied to the driven cavity problem.
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6. Conclusions

The local superlinear convergence and local convergence with orders
1Cp, p ∈ (0, 1], of the Newton methods were characterized in a more natural
setting, which assumes that the Jacobians are perturbed, the function evalu-
ations are performed approximately for F, and the resulting linear systems
are solved inexactly. The results of Dembo, Eisenstat, and Steihaug allowed
us to extend their local convergence analysis to this setting.

The sufficient conditions for local convergence with different conver-
gence orders show that the perturbations in the Jacobians may be allowed
to have much greater magnitudes than those in the function evaluations and
than the magnitudes of the residuals; this may be explained by the fact that
the right-hand sidesAF (xk ) of the linear systems from the Newton method
tend to zero, while the matrices F ′ (xk ) tend to F ′ (x*), assumed here to be
nonsingular. It follows that the methods for solving the linear systems from
the Newton methods must be analyzed in this respect and also that special
care must be taken when the function evaluations may be affected by sig-
nificant errors. The greater sensitivity of the right-hand sides AF (xk ) has
been known for a longer time (see for example Refs. 11, 21, and references
therein) such that the evaluation of these vectors in double precision or
extended precision is already a standard.

The existing results for the (INM) iterates allowed us to show that the
Newton–GMRES iterates have a monotone property. We were able to prove
that the Newton–MINPERT iterates share this property only under some
additional conditions, whereas from a concrete example we saw that
Newton–GMBACK iterates do not generally share this property. The conver-
gence orders of the Newton–GMBACK and Newton–MINPERT methods can
be controlled in terms of the magnitude of the backward errors of the
approximate steps. The theoretical results were confronted with the per-
formed numerical examples.

Many of the existing results for different Newton-type methods may
be reconsidered in the (IPNM) setting. For example, the local convergence
orders of some finite-difference Newton–Krylov methods studied by Brown
(Ref. 26) now may be analyzed in the (IPNM) setting. On the other hand,
new approaches can be developed as well; for instance, we should mention
the local convergence and acceleration techniques for the (IPNM) in the
case of singular Jacobian at the solution. Other results and directions of
research are included in our PhD Thesis (Ref. 44).
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