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Abstract. The Ostrowski theorem is a classical result which ensures
the attraction of all the successive approximations xkC1GG(xk) near a
fixed point x*. Different conditions [ultimately on the magnitude of
G′(x*)] provide lower bounds for the convergence order of the process
as a whole. In this paper, we consider only one such sequence and we
characterize its high convergence orders in terms of some spectral
elements of G′(x*); we obtain that the set of trajectories with high con-
vergence orders is restricted to some affine subspaces, regardless of the
nonlinearity of G. We analyze also the stability of the successive
approximations under perturbation assumptions.
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1. Introduction

Consider a subset D ⊆ �n and a mapping G: D→D which has a fixed
point x*∈int(D),

G(x*)Gx*.

We are interested in the convergence to x* of the successive approximations
(xk)k¤0, given for some x0∈D by

xkC1GG(xk), kG0, 1, . . . . (1)

First, we recall briefly the definitions of the convergence orders. The symbol
�� · �� stands for a given norm in �n and for its induced operator norm.
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Definition 1.1. See Ref. 1, Chapter 9. Let (xk)k¤0⊂ �n be an arbi-
trary sequence converging to some x*∈�n. For each α∈[1, +S ), the
quotient factor and the root convergence factor are defined by

Qα {xk}

G�
0, if xkGx*, for all but finitely many k,

limsup
k→S

��xkC1Ax*�����xkAx*��α, if xk≠x*, for all but finitely many k,

+S, otherwise,

Rα {xk}G�limsup
k→S

��xkAx*��1�α k
, when αH1,

limsup
k→S

��xkAx*��1�k, when αG1.

The q-convergence and r-convergence orders are defined by

OQ{xk}G�+S, if Qα {xk}G0, ∀α∈[1, +S ),

inf{α∈[1, +S ): Qα {xk}G+S}, otherwise,

OR{xk}G�+S, if Rα {xk}G0, ∀α∈[1,+S ),

inf{α∈[1, +S ): Rα {xk}G1}, otherwise.

Remark 1.1. When Q1{xk}G0, it is said that the sequence converges
q-superlinearly; this may be written as

��xkC1Ax*��Go(��xkAx*��), as k→S.

When Qα 0{xk}F+S for some α0H1, one may write

��xkC1Ax*��GO (��xkAx*��α 0), as k→S.

We recall also that q-convergence with a certain order implies r-convergence
with at least the same order, the converse being false; for related results, we
refer the reader to Ref. 1, Chapter 9 and Ref. 2; see also Ref. 3, Chapter 3
and Ref. 4.

When considering a whole iterative process, its convergence order
measures the worst convergence among the sequences with the same limit.
In this paper, we shall deal with the conditions ensuring that x* is an attrac-
tion point; i.e., there exists an open ball with center at x* such that all the
sequences given by (1), with the initial approximation x0 from that ball,
converge to x*. The set of all such sequences will be denoted by S . The
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q-factor and r-factor of the iterative process S are then defined as

Qα (S )Gsup{Qα {xk}: (xk)k¤0∈S },

Rα (S )Gsup{Rα {xk}: (xk)k¤0∈S },

the convergence orders being defined in the same fashion as for a single
sequence.

The following attraction theorem is well known; see also Ref. 3,
Theorem 3.5.

Theorem 1.1. See Ostrowski (Ref. 5, Theorem 22.1) and see Ref. 1,
Theorems 10.1.3 and 10.1.4. Assume that the mapping G is differentiable
at the fixed point x*∈int(D). If the spectral radius of G′(x*) satisfies

ρ(G′(x*))GσF1,

then x* is an attraction point for the successive approximations. Moreover,

R1 (S )Gσ ,

and if σH0, then

OR(S )GOQ (S )G1.

The condition σF1 is sharp. See the following example.

Example 1.1. See Ref. 1, Exercise 10.1–2. For G: �→�,

G(x)GxAx3,

x*G0 is an attraction point, while for

G(x)GxCx3,

the same fixed point is no longer an attraction point; in both cases, σG1.

It is worth noting that the r-superlinear convergence of S does not
generally imply the q-superlinear convergence; see also Ref. 3, p. 30.

Example 1.2. See Ref. 1, Exercise 10.1–6. For G: �2→�2,

G(u, û)G(u2Aû, û2),

with x*G0, one obtains R1 (S )G0, but Q1 (S )H0 in any norm.

A sufficient condition for R1 (S )GQ1 (S )Gσ∈[0, 1) is that G′(x*) is
an M-matrix (see Ref. 3, p. 30); i.e., there exists a norm �� · �� in �n such that
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��G′(x*) ��Gσ [equivalently, for any eigenvalue λ of G′(x*) with �λ �Gσ , all
Jordan blocks containing λ are one-dimensional; see e.g. Ref. 6, p. 46]. As
a limiting situation, we are led to the following result, which was proved in
a direct manner in Ref. 1 (see also Ref. 3, p. 30).

Theorem 1.2. See Ref. 1, Theorem 10.1.6. Under the assumptions of

the Ostrowski theorem, if G′(x*)G0, then R1 (S )GQ1 (S )G0; i.e. S has
q-superlinear and r-superlinear convergence.

The convergence orders in the above theorem are actually higher if G
is smoother; see also Ref. 3, Theorem 3.6.

Theorem 1.3. See Ref. 1, Theorem 10.1.7. Assume that the mapping
G is continuously differentiable on an open neighborhood of the fixed point
x*∈int(D). If G′(x*)G0 and if G is twice differentiable at x*, then

OR(S )¤OQ (S )¤2;

i.e. the process has q-convergence and r-convergence orders of at least two.
If additionally,

G′′(x*)(h, h)≠0, for all h ≠0 in �n,

then the convergence orders are exactly equal to two,

OR(S )GOQ (S )G2.

Ortega and Rheinboldt have noticed that the conditions in the previous
two results are not necessary.

Example 1.3. See Ref. 1, Exercise 10.1–12. For G: �
2→�

2,

G(u, û)G(0, uCuûCûα),

arbitrarily high q-convergence orders αH1 may be attained at x*G0, even
if G′ (x*) ≠0.

The above results on sufficiency are global, in the sense that they
provide lower bounds for the convergence orders of all the sequences from
S . However, it is possible for some sequences to exhibit higher convergence
orders than the lowest bound ensured for some α0¤1 by Qα0 (S ) or
Rα0 (S ).

Example 1.4. Consider some αH1 and G: �2→�2,

G(u, û)G(1�2 u, ûα),
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with x*G0 and σG1�2. Then,

(a) for x0G(u0 , û0), u0≠0, 0⁄ �û0 �F1, (xk)k¤0 converges only linearly;
(b) for x0G(0, û0), 0F�û0 �F1, (xk)k¤0 converges with q-order αH1.

The aim of this paper is to characterize the high convergence orders
of the sequence (1). This will be done in Section 2, while in Section 3 we
shall analyze the stability of these iterations under some perturbation
assumptions.

2. Convergence Orders of the Successive Approximations

Given a subset D′ ⊆ �
n and a nonlinear mapping F: D′→�

n, the New-
ton method for approximating a solution of the nonlinear system F (x)G0
is given by

xkC1GxkAF ′(xk)
−1F(xk), kG0, 1, . . . , x0∈D′.

Several results have revealed the local convergence properties of this
method and of other Newton-type iterations; see e.g. Refs. 1, 3, 5, and 7–
36. We shall recall the results of Dembo, Eisenstat, and Steihaug on inexact
Newton methods (Ref. 16), which will allow us to analyze the local behavior
of the successive approximations.

Consider the following (standard) assumptions on F:

(a) there exists x*∈D′ such that F(x*)G0;
(b) the mapping F is differentiable on an open neighborhood of x*,

with F ′ continuous at x*;
(c) the Jacobian F ′(x*) is nonsingular.

The derivative F ′ is said to be Hölder continuous at x* with exponent
p, p∈(0, 1], if there exist L, (H0 such that

��F ′(x)AF ′(x*) ��⁄L��xAx*��p, when ��xAx*��F( .

Given an initial approximation x0∈D′, the inexact Newton (IN)
method for approximating the solution x* is given by the following
iterations:

For kG0, 1,. . ., until convergence do the following steps:

Step 1. Find sk such that F ′(xk)skG−F (xk)Crk .
Step 2. Set xkC1GxkCsk .

The residuals rk are the amounts by which the approximate solutions
sk fail to satisfy the exact linear systems.
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The following result was obtained in Ref. 16.

Theorem 2.1. See Ref. 16. Assume that F satisfies the standard
assumptions and that, for an initial approximation x0∈D′, the IN iterates
converge to x*. Then, the convergence is q-superlinear iff

��rk ��Go(��F(xk) ��), as k→S.

Additionally, if F ′ is Hölder continuous at x* with exponent p, p∈(0, 1],
then the convergence is with q-order 1Cp iff

��rk ��GO (��F(xk) ��1Cp), as k→S,

while it has r-order 1Cp iff

rk→0, with r-order 1Cp, as k→S.

We obtain the following result concerning the successive
approximations.

Theorem 2.2. Assume that the mapping G is differentiable on an open
neighborhood of the fixed point x*, with G′ continuous at x* and
ρ(G′(x*))GσF1. Let x0∈D be an initial approximation such that the
sequence of successive approximations converges to x*. Then (xk)k¤0 con-
verges q-superlinearly iff

��G′(xk)(xkAG(xk)) ��Go(��xkAG(xk) ��), as k→S. (2)

Additionally, suppose that G′ is Hölder continuous at x* with exponent p,
p∈(0, 1]. Then (xk)k¤0 converges with q-order 1Cp iff

��G′(xk)[xkAG(xk)]��GO (��xkAG(xk) ��1Cp), as k→S, (3)

while the convergence is with r-order 1Cp iff

G′(xk)(xkAG(xk))→0, with r-order 1Cp, as k→S.

Proof. The successive approximations may be regarded as IN iterates
for solving

F(x)GxAG(x)G0,

namely,

[IAG′(xk)][G(xk)Axk ]G−[xkAG(xk)]CG′(xk)[xkAG(xk)].
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The standard assumptions on FGIAG are obviously satisfied, the inverti-
bility of F ′(x*)GIAG′(x*) being ensured by hypothesis σF1. Next, the
Hölder continuity of G′ at x* implies the same property for F ′,

��F ′(x)AF ′(x*) ��⁄(1CL) ��xAx*��p, when ��xAx*��F(F1.

Denoting

rkGG′(xk) [xkAG(xk)],

the conclusions are now straightforward from the previous theorem. �

Remark 2.1.

(a) The superlinear convergence of S when G′(x*)G0, assured by
Theorem 1.2, is retrieved under the hypotheses of this result:

��G′(xk)(xkAG(xk)) ��⁄ ��G′(xk) �� ��xkAG(xk) ��

Go(��xkAG(xk) ��), as k→S.

(b) The conclusions of Theorem 1.3 may be obtained in the same
fashion,

��G′(xk)(xkAG(xk)) ��

G�� (G′(xk)AG′(x*))(xkAG(xk)) ��

⁄ (��G′′(x*) �� ��xkAx*��Co(��xkAx*��)) ��xkAG(xk) ��

GO (��xkAG(xk) ��2), as k→S,

since the standard hypotheses on F ensure the existence of α , (H0
such that (see Ref. 16)

(1�α) ��xAx*��⁄ ��F(x) ��⁄α ��xAx*��, for ��xAx*��F( .

(c) The same conclusions could be obtained in the above theorem
by writing the successive approximations as either quasi-Newton
iterates or inexact perturbed Newton iterates; see Refs. 11, 14, 15.

(d) Instead of σF1, one may assume a more general condition,
namely that IAG′ (x*) is invertible [which holds iff G′(x*) has no
eigenvalue equal to one] and that (xk)k¤0 converges to x*.

(e) The Ostrowski theorem holds also in Banach spaces (see e.g. Ref.
37, Theorem 4C) as well as the corresponding characterizations
for the IN iterations, so our result may be restated in this more
general frame.
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Theorem 2.2 characterizes the convergence orders of the successive
approximations in terms of the iterates alone. In the following two results,
we shall show that the convergence orders are intimately related to some
spectral elements of G′(x*).

Theorem 2.3. Under the assumptions of Theorem 2.2, the sequence
(xk)k¤0 converges q-superlinearly if and only if G′(x*) has a zero eigenvalue
and, starting from a certain step, the corrections xkC1Axk are the corre-
sponding eigenvectors,

G′(x*)(xkC1Axk)G0, ∀k¤ k0 . (4)

Provided that G′ is Hölder continuous at x* with exponent p, p∈(0, 1],
the above condition characterizes in fact the q-convergence orders 1Cp.

Proof. The residuals of the IN iterates may be written as the sums of
two terms,

ArkG[G′(xk)AG′(x*)] (xkC1Axk)CG′(x*) (xkC1Axk), kG0, 1, . . . ,

so the sufficiency of condition (4) is obvious. For necessity, we notice that
the residuals and their first terms converge to zero with rate at least
o(��xkAG(xk) ��) as k→S, which requires (4). �

Remark 2.2.

(a) The above result implies that no q-superlinear convergence to x*
of any sequence of successive approximations may occur when all
the eigenvalues of G′(x*) are nonzero.

(b) As Example 1.3 shows, S may attain q-superlinear convergence
even when not all the nonzero vectors in �n are eigenvectors of
the eigenvalue 0, i.e., when G′(x*) has only the zero eigenvalue
but is defective. However, in such a case, the set of the possible
trajectories is restricted.

(c) We notice that, when OQ (S )G1, the eventual sequences with q-
superlinear convergence are highly sensitive to perturbations,
which is not good news for the floating-point arithmetic context.
We shall analyze the convergence of the perturbed sequences in
Section 3.

The other characterization may be stated in terms of errors.

Theorem 2.4. Under the assumptions of Theorem 2.2, (xk)k¤0 con-
verges q-superlinearly if and only if G′(x*) has a zero eigenvalue and,
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starting from a certain step, the errors xkAx* are corresponding
eigenvectors,

G′(x*) (xkAx*)G0, ∀k¤k0 . (5)

Provided that G′ is Hölder continuous at x* with exponent
p, p∈(0, 1], the above condition characterizes in fact the q-convergence
orders 1Cp.

Proof. The sufficiency is again obvious. For necessity, using (4), we
get that

G′(x*) (xkAx*)GG′(x*) (xk0Ax*), ∀k¤k0C1,

and therefore we get the conclusions, since these constant terms have the
limit zero. �

It is interesting to note that when (xk)k¤0 converges q-superlinearly to
x* and the zero eigenvalue of G′(x*) is simple, then its trajectory is restricted
from a certain step to a line containing x*, regardless of the nonlinearity of
G; when zero is a double eigenvalue, the trajectory is restricted from a cer-
tain step to a plane containing x*, etc. Theoretically, the trajectory may be
arbitrary only when G′(x*)G0.

Consider now the affine mapping

G(x)GBxCc, B∈�nBn, c∈�n given ,

and for some initial approximation x0∈�n the iterations

xkC1GBxkCc, kG0, 1, . . . . (6)

The condition ρ(B )F1 in the Ostrowski theorem becomes necessary and
sufficient for these iterates to converge for any initial approximation
x0∈�n to the unique fixed point x* in �n; see e.g. Ref. 1, Theorem 10.1.5.
Our results can be refined in this case.

Theorem 2.5. If ρ(B )G0, then the sequence given by (6) converges to
x* in less than n steps, for any initial approximation x0∈�n. If 0Fρ(B)F1,
then (xk)k¤0 converges q-superlinearly if and only if there exists k0∈� such
that

B kC1[(IAB)x0Ac]G0, ∀k¤ k0 , (7)

in which case xk0C1Gx*.

Proof. It is known that a matrix has a spectral radius zero iff it is
nilpotent; i.e., there exists l0∈� such that Bl0G0, in which case l0 may be
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taken smaller than n (see Ref. 38, Problem 159). The relation

xkC1AxkGB k(x1Ax0), kG2, 3, . . . , ∀x0∈�
n, (8)

completes the proof of the first affirmation.
The relation (7) is obtained immediately from (4) and (8). �

When the initial approximation is taken to be zero, we obtain the fol-
lowing result.

Corollary 2.1. If ρ(B )F1 and x0G0, then the sequence given by (6)
converges in a finite number of steps if and only if ρ(B)G0 or there exists
k0∈� such that

B k0cG0.

It is worth noting that, in the affine case, the q-superlinear convergence
reduces to convergence in a finite number of steps, i.e., to convergence with
infinite order.

3. Stability of the Successive Approximations

Assume that the evaluation of G at each step is performed only
approximately,

xkC1GG(xk)Cδk , kG0, 1, . . . . (9)

These iterates may be viewed again as IN iterations for solving

F(x)GxAG(x)G0,

since

[IAG′(xk)] [G(xk)CδkAxk ]

G−[xkAG(xk)]CG′(xk) [xkAG(xk)]C[IAG′(xk)]δk .

We obtain the following result.

Theorem 3.1. Assume that G satisfies the assumptions of Theorem 2.2,
and that the sequence (9) of perturbed successive approximations converges
to x*. Then the convergence is q-superlinear iff

��G′(xk) [xkAG(xk)]C[IAG′(xk)] δk ��

GO(��xkAG(xk) ��), as k→S.
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Additionally, if G′ is Hölder continuous at x* with exponent p, the conver-
gence is with q-order 1Cp iff

��G′(xk) [xkAG(xk)]C[IAG′(xk)] δk ��

GO (��xkAG(xk) ��1Cp), as k→S,

and with r-order 1Cp iff

G′(xk) [xkAG(xk)]C[IAG′(xk)] δ k→0, with r-order 1Cp, as k→S.

Remark 3.1. We notice that sufficient conditions for the high conver-
gence orders of the perturbed successive approximations are obtained when
xkAG(xk) and δk are eigenvectors corresponding to the eigenvalue 0 of
G′(x*) and δk converges to zero with a certain speed. In such a case, the
trajectory remains in the set of the high convergence trajectories correspond-
ing to the unperturbed iterations.

4. Conclusions

The condition ρ(G′(x*))F1 in the Ostrowski theorem ensures that the
fixed point x* is an attraction point and yields the lowest r-convergence
order attained by all the sequences of successive approximations. Our results
characterize the high q-convergence orders of a single such sequence [which
may be attained even when ρ(G′(x*)) ≠0], indicating the set of all possible
trajectories with convergence orders up to two (in this sense, the study of
the convergence orders higher than two may be a direction of future
research). The Ostrowski theorem requires the knowledge of the spectral
radius of G′(x*), while ours require the spectral structure of G′(x*).

The results obtained may be applied to the study of the iterative
methods used in practice and which may be written as fixed-point problems
with known mappings G and G′; they may be applied also to the study
of the fixed-point problems in the more abstract setting of Banach spaces
(differential and integral equations, dynamical systems, etc). Further, we
shall study the existence and estimates for the radius of the attraction balls
for the successive approximations with high convergence orders.
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11. CǍTINAŞ, E., Newton and Newton–Kryloû Methods for Solûing Nonlinear
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