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Abstract. We present a semilocal convergence result for the Chebyshev

method applied to a polynomial system of equations of degree 2.

We apply the method in order to approximate the eigenpairs of matrices.

The norming function we have proposed in a previous paper of us shows on test

matrices better convergence properties of the iterates than the classical norming

function.
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1. INTRODUCTION Let F : X → X be a nonlinear mapping, where

(X, ∥·∥) is a Banach space, and consider the equation

F (x) = 0. (1)

We shall assume that F is a polynomial of degree 2, i.e., it is indef-

initely differentiable on X, with F (i) (x) = θi, for all x ∈ X and i ≥ 3,

where θi is the i-linear null operator.

In the present paper we shall study the convergence of the Chebyshev

method

xk+1 = xk − F ′ (xk)
−1

F (xk)− 1
2F

′ (xk)
−1

F ′′ (xk) (F
′ (xk)

−1
F (xk))

2.

We shall apply this study to the approximation of the eigenpairs of the

linear operators in Banach spaces, and we shall consider some numerical

examples for some test matrices.
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2. A semilocal convergence result The iterative Chebyshev method

for solving equation (1) consists in the successive construction of the ele-

ments of the sequence (xk)k≥0 given by

xk+1 = xk − ΓkF (xk)− 1
2ΓkF

′′ (xk) (ΓkF (xk))
2
, k = 0, 1, ..., x0 ∈ X,

(2)

where Γk = F ′ (xk)
−1

.

Let x0 ∈ X and δ > 0, β > 0 be two real numbers. Denote

B = Bδ(x0) = {x ∈ X : ∥x− x0∥ ≤ δ} . If K = supx∈B ∥F ′′ (x)∥, then
supx∈B ∥F ′ (x)∥ ≤ ∥F ′ (x0)∥+Kδ and

sup
x∈B

∥F (x)∥ ≤ ∥F (x0)∥+ δ∥F ′ (x0) ∥+Kδ2 = m0.

Consider the numbers

µ = 1
2K

2β4
(
1 + 1

4Km0β
2
)

ν = β
(
1 + 1

2Km0β
2
) (3)

With the above notations, the following theorem holds:

Theorem 1. If the operator F is three times differentiable with

F ′′′ (x) ≡ θ3 for all x ∈ B and if, moreover, there exist x0 ∈ X,

δ > 0, β > 0 such that the following relations hold

i. the operator F ′ (x) has a bounded inverse for all x ∈ B, and

∥F ′ (x)
−1 ∥ ≤ β;

ii. the numbers µ and ν given by (3) satisfy the relations

ρ0 =
√
µ ∥F (x0)∥ < 1

and
νρ0√

µ (1− ρ0)
≤ δ,

then the following properties hold:

j. the sequence (xk)k≥0 given by (2) is convergent;

jj. denoting x∗ = limx→∞ xk, then x∗ ∈ B and F (x∗) = θ1;

jjj. ∥xk+1 − xk∥ ≤ νρ3k

0√
µ , k = 0, 1, . . . ;
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jv. ∥x∗ − xk∥ ≤ νρ3k

0√
µ(1−ρ3k

0 )
, k = 0, 1, . . . .

Proof. Denote by G : B → X the following mapping:

G (x) = −Γ (x)F (x)− 1
2Γ (x)F ′′ (x) [Γ (x)F (x)]

2
, (4)

where Γ (x) = F ′ (x)
−1

.

It can be easily seen that for all x ∈ B the following identity holds

F (x) + F ′ (x)G (x) + 1
2F

′′ (x)G2 (x) =

= 1
2F

′′(x)
[
F ′(x)−1F (x), F ′(x)−1F ′′(x)

[
F ′(x)−1F (x)

]2]
+

+ 1
8F

′′(x)
[
F ′(x)−1F ′′(x)

[
F ′(x)−1F (x)

]2]2
whence we obtain∥∥F (x) + F ′ (x)G (x) + 1

2F
′′ (x)G2 (x)

∥∥ ≤

≤ 1
2K

2β4
(
1 + 1

4m0Kβ2
)
∥F (x)∥3 ,

(5)

or∥∥F (x) + F ′ (x)G (x) + 1
2F

′′ (x)G2 (x)
∥∥ ≤ µ ∥F (x)∥3 , for all x ∈ B. (6)

Similarly, using (4) and taking into account the notations we made,

we get

∥G (x)∥ ≤ ν ∥F (x)∥ , for all x ∈ B. (7)

From the hypotheses of the theorem, the inequality (6) and the fact

that F ′′′ (x) = θ3, we obtain the following inequality:

∥F (x1)∥ ≤
∥∥F (x1)− F (x0)− F ′ (x0)G (x0)− 1

2F
′′ (x0)G

2 (x0)
∥∥+

+
∥∥F (x0) + F ′ (x0)G (x0) +

1
2F

′′ (x0)G
2 (x0)

∥∥
≤µ ∥F (x0)∥3 .

Since x1 − x0 = G (x0), by (6) we have

∥x1 − x0∥ ≤ ν ∥F (x0)∥ =
ν
√
µ∥F (x0)∥√

µ < νρ0√
µ(1−ρ0)

≤ δ,

whence it follows that x1 ∈ B.

Suppose now that the following properties hold:



On the Chebyshev method 207

a) xi ∈ B, i = 0, . . . , k;

b) ∥F (xi)∥ ≤ µ ∥F (xi−1)∥3 , i = 1, . . . , k.

By the fact that xk ∈ B, using (6) it follows

∥F (xk+1)∥ ≤ µ ∥F (xk)∥3 , (8)

and from relation xk+1 − xk = G (xk)

∥xk+1 − xk∥ < ν ∥F (xk)∥ . (9)

The inequalities b) and (8) lead us to

∥F (xi)∥ ≤ 1√
µ

(√
µ ∥F (x0)∥

)3i
, i = 1, . . . , k + 1. (10)

We have that xk+1 ∈ B:

∥xk+1 − x0∥≤
k+1∑
i=1

∥xi − xi−1∥≤
k+1∑
i=1

ν ∥F (xi−1)∥≤ ν√
µ

k+1∑
i=1

ρ3
i−1

0 ≤ νρ0

(1−ρ0)
√
µ .

Now we shall prove that the sequence (xk)k≥0 is Cauchy. Indeed, for

all m, k ∈ N we have

∥xk+m − xk∥ ≤
m−1∑
i=0

∥xk+i+1 − xk+i∥ ≤ ν

m−1∑
i=0

∥F (xk+i)∥ ≤ (11)

≤ ν√
µ

m−1∑
i=0

ρ3
k+i

0 = ν√
µρ

3k

0

m−1∑
i=0

ρ3
k+i−3k

0 ≤ νρ3k

0√
µ(1−ρ3k

0 )
,

whence, taking into account that ρ0 < 1, it follows that (xk)k≥0 converges.

Let x∗ = limk→∞ xk. Then, for m → ∞ in (11) it follows jv. The conse-

quence jjj follows from (9) and (10).

3. Application and numerical examples We shall study this method

when applied to approximate the eigenpairs of matrices.

Denote V = Kn and let A ∈ Kn×n where K = R or C. For computing

the eigenpairs of A one may consider a norming function G : V → K with

G (0) ̸= 1. The eigenvalues λ ∈ K and eigenvectors v ∈ V of A are the

solutions of the nonlinear system

F (x) =

(
Av − λv

G (v)− 1

)
= 0,
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where x =
(
v
λ

)
∈ V ×K = Kn+1,

(
x(1), x(2), ..., x(n)

)
= v and x(n+1) = λ.

The first n components of F , Fi, i = 1, ..., n, are given by

Fi (x) =ai1x
(1) + · · ·+ ai,i−1x

(i−1) +
(
aii − x(n+1)

)
x(i)

+ ai,i+1x
(i+1) + · · ·+ ainx

(n).

The standard choice for G is

G (v) = α ∥v∥2 ,

with α = 1
2 . We have proposed in [ 4] (see also [ 7]), the choice α =

1
2n , which has shown a better behavior for the iterates than the standard

choice.

In both cases we can write

Fn+1 (x) = α
((

x(1)
)2

+ · · ·+
(
x(n)

)2)− 1.

The first and the second order derivatives of F are given by

F ′ (x)h=


a11 − x(n+1) a12 ... a1n −x(1)

a21 a22 − x(n+1) ... a2n −x(2)

...
...

...
...

an1 an2 ... ann − x(n+1) −x(n)

2αx(1) 2αx(2) ... 2αx(n) 0




h(1)

h(2)

...

h(n)

h(n+1)

 ,

and

F ′′ (x)hk =


−k(n+1) 0 ... 0 −k(1)

0 −k(n+1) ... 0 −k(2)

...
...

...
...

0 0 ... −k(n+1) −k(n)

2αk(1) 2αk(2) ... 2αk(n) 0




h(1)

h(2)

...

h(n)

h(n+1)

 ,

where x =
(
x(i)

)
i=1,n+1

, h =
(
h(i)

)
i=1,n+1

, k =
(
k(i)

)
i=1,n+1

∈ Kn+1.

We shall consider two test matrices from the Harwell Boeing collec-

tion1 in order to study the behavior of the Chebyshev method for approx-

1These matrices are available from MatrixMarket at the following address:
http://math.nist.gov/MatrixMarket/.
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imating the eigenpairs. The programs were written in Matlab. As in [ 20],

we used the Matlab operator ’\’ for solving the linear systems.

Fidap002 matrix. This real symmetric matrix of dimension n = 441

arises from finite element modelling. Its eigenvalues (contained on the di-

agonal of D, after using the Matlab command [V,D]=eig(A)) are all sim-

ple and range from −7 · 108 to 3 · 106. As in [ 20], we have chosen to

study the smallest eigenvalue, λ∗ =D(1,1), which is well separated. Its

corresponding eigenvector V(:,1) has the Euclidean norm equal to 1, and

therefore we have v∗ =sqrt(2) * V(:,1) for the first choice, respectively

v∗ =sqrt(2*n) * V(:,1) for the second choice.

It is interesting to note that ∥F (x∗)∥2 = 3.7e− 7 in the first case, and

∥F (x∗)∥2 = 9.1e− 6 in the second case.

The initial approximations were taken λ0 = λ∗ + 102 = −6.999 6 ·
108 + 100, and for the initial vector v0 we perturbed the solution v∗ with

random vectors having the components uniformly distributed on (−ε,ε),

ε = 0.3. This lead in a relative error ∥x0−x∗∥
∥x∗∥ = 7.0 · 101 in the first case,

and ∥x0−x∗∥
∥x∗∥ = 3.3 · 100 in the second one.

The following results are typical for the runs made (we have considered

a common perturbation vector); Table 1 contains the norms of the vectors

F (xk).

Table 1. The Fidap002 matrix.

Choice α = 1
2

Choice α = 1
2n

k ∥F (xk)∥ ∥F (xk)∥
0 2.48 · 10+9 2.48 · 10+9

1 5.10 · 10+4 2.41 · 10+1

2 6.81 · 10+3 4.70 · 10−6

3 9.34 · 10+2

4 7.06 · 10+1

5 4.86 · 10−2

6 2.81 · 10−7

The values of ε must be decreased to 0.03 for the iterates with first

choice to attain the solution at step k = 2 (as it does with choice two),

while the same ε may be increased to 7 for the iterates with the second

choice to attain the solution at step k = 6.

Because of the scalings, the components of the eigenvector when taken

with the second choice may be affected by larger errors than with the first

choice.
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Sherman1 matrix. This matrix arises from oil reservoir simulation.

It is real, unsymmetric, of dimension 1000 and all its eigenvalues are real.

We have chosen to study the smallest eigenvalue λ∗ = −5.0449, which

is not well separated (the closest eigenvalue is −4.9376). The initial ap-

proximation was taken λ0 = λ∗ + 0.05 and for the initial vector v0 we

considered ε = 0.01. The following results are typical for the runs made

(we have considered again a same random perturbation vector for the ini-

tial approximations). The relative errors ∥x0−x∗∥
∥x∗∥ for the two choices were

2.65 · 10−1 resp. 8.38 · 10−3.

Table 2. Sherman1 matrix.

Choice α = 1
2

Choice α = 1
2n

k ∥F (xk)∥ ∥F (xk)∥
0 1.57 · 10+00 2.73 · 10+00

1 1.18 · 10−02 6.39 · 10−03

2 2.69 · 10−03 1.72 · 10−09

3 4.02 · 10−09 2.58 · 10−14

4 8.08 · 10−16

For this particular matrix and eigenvalue, the Chebyshev method has

shown a strong sensitivity to the size of the perturbations: increasing ε

leads to the loss of the convergence of the Chebyshev iterates.

As it can be seen from both examples, the second choice presents a

better behavior than the first one.
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