Analele Universitatii din Timisoara
Vol. IL, Fasc. 2, 2001
Seria Matematica—Informatica

On the Chebyshev method, with numerical applications to
the eigenpair problem

Presented at 5" Int. Workshop Symbolic and Numeric
Algorithms for Scientific Computations (SYNASC03)

Ton Pavaloiu Emil Catinas

Abstract. We present a semilocal convergence result for the Chebyshev
method applied to a polynomial system of equations of degree 2.

We apply the method in order to approximate the eigenpairs of matrices.
The norming function we have proposed in a previous paper of us shows on test
matrices better convergence properties of the iterates than the classical norming

function.
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1. INTRODUCTION Let F': X — X be a nonlinear mapping, where
(X,]|-]|) is a Banach space, and consider the equation

F(z) =0. (1)

We shall assume that F' is a polynomial of degree 2, i.e., it is indef-
initely differentiable on X, with F(®) (z) = 6;, for all z € X and i > 3,
where 6; is the i-linear null operator.

In the present paper we shall study the convergence of the Chebyshev
method

1 = a — F' (o) 7 F () = 3F () 7 F" () (F (@)1 F ().

We shall apply this study to the approximation of the eigenpairs of the
linear operators in Banach spaces, and we shall consider some numerical
examples for some test matrices.
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2. A semilocal convergence result The iterative Chebyshev method
for solving equation consists in the successive construction of the ele-
ments of the sequence (z),~ given by

wpsr = ap — DpF (23) — 306 F” (xx) (DR F (21,))°, k= 0,1,..., @9 € X,
2)
where Ty, = F/ (z) "
Let zp € X and § > 0, B8 > 0 be two real numbers. Denote
B = Bs(xg) = {z € X : ||z — x| <6}. If K = sup,epl|F” (x)], then
sup,ep [|[F” (z)|| < [[F7 (zo)|| + K6 and

SugIIF(SC)II < |IF (o)l + 8| F" (o) || + K82 = my.
fAS

Consider the numbers
p=3K*p* (1+ 1KmoB?)
v=0(1+3Kmop?)

With the above notations, the following theorem holds:

Theorem 1. If the operator F is three times differentiable with
F" (x) = 63 for all x € B and if, moreover, there exist xy € X,
0 >0, B> 0 such that the following relations hold

i. the operator F' (x) has a bounded inverse for all x € B, and
~1
1F" ()7 || < B;
21. the numbers  and v given by satisfy the relations

po =/ |[F (zo)|| <1

and
Vpo <

VI =po) ~
then the following properties hold:

J- the sequence (xk)kzo given by s convergent;
JJ. denoting x* = lim,_, o 2, then * € B and F (x*) = 6y;
k

3
g Neren — gl < 22, k=0,1,...;
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.
o, | —ap] < =2 k=0,1,....
= vE1=p3)’ Y

Proof. Denote by G : B — X the following mapping:

G(x) =T (2) F (z) = 3T (2) F" (2) [T (2) F (2))?, (4)
where I (z) = F/ ()"
It can be easily seen that for all € B the following identity holds
F(z)+F' ()G (z)+ 3F" (2) G* (z) =
= LF"(2) [F'(2) " F (@), F'(2) " F" (2) [F(2) " F ()] +
+ L () [F'(2) 7 F (@) [F’(x)’lF(x)]Qr
whence we obtain
||F (x)+ F' (2) G (z) + %F” (r) G? (:c)” <
< 3E2B4 (14 fmoKp?) |IF (2)]°,

|F (z) + F' () G (z) + $F" (2) G* ()| < |F (z)||°, for all z € B. (6)

Similarly, using and taking into account the notations we made,
we get
|G (@)|| < v||F (z)], for all z € B. (7)

From the hypotheses of the theorem, the inequality @ and the fact
that F"" (z) = 03, we obtain the following inequality:
IF (z1)]| < ||F (1) = F (w0) — F' (w0) G (wo) — 5F" (x0) G* (wo) || +
+ HF (LU()) + F' (mo) G (l‘o) + %F” (.T()) G? (:130)”
<p || F (o)l .
Since 21 — zg = G (20), by (6) we have

v F(x v
lz1 = o] < v |[F (20) ]| = DA < o <,

whence it follows that z; € B.
Suppose now that the following properties hold:
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a) x; € B,i=0,...,k;
b) IF o)l < wllF (@), i = 1, k.

By the fact that x € B, using @ it follows

IF ()| < | F ()] (8)

and from relation xyy1 — zr = G (zk)
[@rr — aill <vI[|F (ze)] - (9)

The inequalities b) and (8] lead us to

3t
IF @)l < 2 (VEIF @o)]l)” i =1, k1. (10)
We have that zp1 € B:

k41 k+1 B
|2xr1 — 2ol <D llwi — i | <D v IF (i) < 7 o< T i
=1 =1 =1

Now we shall prove that the sequence (xy) k>0 18 Cauchy. Indeed, for
all m,k € N we have

m—1 m—1
|kt = 2kl < D lersivs =zl v D) NF (@rpa)ll < (11)
=0 =0

3k

m—1 m—1
k+1 k k+i k
< v 3 — v 3 3 -3 < VpPg
= Vi E < Po \/ﬁp() E < Po — \/ﬁ(l—pgk)7
= i=

whence, taking into account that py < 1, it follows that (zy),~, converges.
Let z* = limy_, o . Then, for m — oo in it follows jv. The conse-

quence jjj follows from @ and .

3. Application and numerical examples We shall study this method
when applied to approximate the eigenpairs of matrices.

Denote V =K™ and let A € K"*" where K = R or C. For computing
the eigenpairs of A one may consider a norming function G : V" — K with
G (0) # 1. The eigenvalues A € K and eigenvectors v € V of A are the
solutions of the nonlinear system

Fe= (G0 21) =0
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where 2 = (}) € Vx K=K, (2, 2@, . 2™) =y and z("+D) = A,
The first n components of F, F;, i = 1,...,n, are given by

Fy (2) =ainz® + -+ anig 20 4 (az; — 27D) 20

+ ai,i-&-lx(iJrl) +oo ot aa™.
The standard choice for G is
G (v) =alvl,,

with @ = 1. We have proposed in [ 4] (see also [ [7]), the choice a =
%, which has shown a better behavior for the iterates than the standard
choice.

In both cases we can write
_ (1))2 (n)2\ _
Fn+1(x)—a<(x ) 4+ (2) ) 1.

The first and the second order derivatives of F' are given by

ajp — Y a2 ain — M R
a1 ag2 — z( D) QAon —z(2) h(2)
F'(x)h= : : : ’
an1 an2 Uy — 2D () R(n)
20z 2023 e 2az™ 0 p(n+1)
and
kDo . 0 —k(M IS
0 =kt 0 —k® h(®
F" () hk = : : : : s
0 0 ... —k(tD k() R
20k™  20k® . 20k™ 0 p(n+1)
where z = (¢®),_, . h= ("), k= (kD)_ o €KL

We shall consider two test matrices from the Harwell Boeing collec-
tiorﬂ in order to study the behavior of the Chebyshev method for approx-

IThese matrices are available from MatrixMarket at the following address:
http://math.nist.gov/MatrixMarket/.
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imating the eigenpairs. The programs were written in Matlab. As in [[20],
we used the Matlab operator ’\’ for solving the linear systems.

FiDAP002 MATRIX. This real symmetric matrix of dimension n = 441
arises from finite element modelling. Its eigenvalues (contained on the di-
agonal of D, after using the Matlab command [V,D]=eig(A)) are all sim-
ple and range from —7 - 108 to 3 - 10°. As in [ 20], we have chosen to
study the smallest eigenvalue, A\* =D(1,1), which is well separated. Its
corresponding eigenvector V(:,1) has the Euclidean norm equal to 1, and
therefore we have v* =sqrt(2) * V(:,1) for the first choice, respectively
v* =sqrt(2*n) * V(:,1) for the second choice.

It is interesting to note that ||F(x*)||2 = 3.7e — 7 in the first case, and
| F'(z*)]]2 = 9.1e — 6 in the second case.

The initial approximations were taken \g = \* + 10> = —6.9996 -
10® + 100, and for the initial vector vy we perturbed the solution v* with
random vectors having the components uniformly distributed on (—¢,e),

e = 0.3. This lead in a relative error Hmﬁ;gﬁ*u = 7.0- 10! in the first case,

and ”I\(I);‘QICI*H = 3.3-10° in the second one.
The following results are typical for the runs made (we have considered
a common perturbation vector); Table 1 contains the norms of the vectors

Table 1. The Fidap002 matrix.

Choice o = % Choice o« = %
Vs
kF ()l F ()
0 248-1019 2.48 - 1019
1 5.10-10%% 2.41-1011
2 6.81-1013 4.70-10~6
3 9.34.10%2
4  7.06-1011
5 4.86-1072
6 2.81-1077

The values of € must be decreased to 0.03 for the iterates with first
choice to attain the solution at step k = 2 (as it does with choice two),
while the same ¢ may be increased to 7 for the iterates with the second
choice to attain the solution at step k = 6.

Because of the scalings, the components of the eigenvector when taken
with the second choice may be affected by larger errors than with the first
choice.
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SHERMAN1 MATRIX. This matrix arises from oil reservoir simulation.
It is real, unsymmetric, of dimension 1000 and all its eigenvalues are real.
We have chosen to study the smallest eigenvalue \* = —5.0449, which
is not well separated (the closest eigenvalue is —4.9376). The initial ap-
proximation was taken \g = A* + 0.05 and for the initial vector vy we
considered € = 0.01. The following results are typical for the runs made
(we have considered again a same random perturbation vector for the ini-
tial approximations). The relative errors % for the two choices were
2.65- 107! resp. 8.38 - 1073,

Table 2. Shermanl matrix.

1 1

Choice o = 5 Choice o« = 55
k |F' ()l |F' (@)l
0 1.57-10100 2.73-10100
1 1.18 - 10702 6.39-10703
2 2.69-10703 1.72-10799
3 4.02-10799 2.58.10~14
4 8.08-10716

For this particular matrix and eigenvalue, the Chebyshev method has
shown a strong sensitivity to the size of the perturbations: increasing e
leads to the loss of the convergence of the Chebyshev iterates.

As it can be seen from both examples, the second choice presents a
better behavior than the first one.
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