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Sufficient convergence conditions for certain
accelerated successive approximations

Emil Catinas

Abstract

We have recently characterized the g-quadratic convergence of the perturbed
successive approximations. For a particular choice of the parameters, these
sequences resulted as accelerated iterations toward a fixed point.

We give here a Kantorovich-type result, which provides sufficient condi-
tions ensuring the convergence of the accelerated iterates.

1 Introduction
Let (X,]|-]|) be a Banach space and G : Q@ C X — Q a nonlinear mapping having

¥ € int Q) as fixed point:

We are interested in the g-quadratic convergence toward x* of the sequences
of successive approximation type. Recall that an arbitrary sequence (yx)k>0 C X
converges (¢g-)quadratically to its limit § € X if [11], [12], [13]

inf {a €[1,400): Quiyr} = +OO} =2,

where
0, if y, = g, for all but finitely many k,
Qo{yr} = < limsup w, if y # g, for all but finitely many k,
k—oo |y — 7l
+00, otherwise.

In the case when 0 < Q2{yx} < 400, one obtains the well known estimate of the
form

lyks1 — 7l < (Qpfye} +2) lyx — 71>, for all k > ko
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(in the sense that for all € > 0 there exists ky > 0 such the above inequalities
hold).

The successive approximations converging quadratically to =* are character-
ized by the following result.

Theorem 1.1 [6] Assume that G is differentiable on a neighborhood D of x*, with
the derivative G' Lipschitz continuous:

1G'(x) -G (W < Llz—yl, Va,y e D.

Suppose further that for a certain initial approximation xog € D, the successive
approrimations
rpr1 = G(zg), k>0,

converge to *, and I — G’ (zy) are invertible starting from a certain step.

Then the convergence is with order 2 if and only if G’ has a zero eigenvalue
and, starting from a certain step, the corrections xi11 — Tk are corresponding
etgenvectors:

G (2*)(xpy1 — x) =0, Vk > ko.

This condition holds equivalently iff the errors xx —x* are corresponding eigenvec-

tors:
G (2*)(x) —2*) =0, Vk > ko,

or iff
xy € z° + Ker G'(2*), Vk > k.

This result implies that if G’ has no eigenvalue 0, there exists no sequence of
successive approximations converging to z* with order 2. ! In such a case, one may
choose to consider for some (0y)r>0 C X the perturbed successive approximations

Tht1 = G(xk) + 6k, k>0. (1)

Their quadratic convergence is characterized by the following result, which does
not require the existence of the eigenvalue 0.

Theorem 1.2 [6] Suppose that G satisfies the assumptions of Theorem 1.1, and
that the sequence (1) of perturbed successive approximations converges to x*. Then
the convergence is with q-order 2 iff

G (k) (zr — G(r)) + (I — G (2x))0k || = O([|xr — G(x1)|?), as k— o0, (2)
In [5] we have shown that if we write

6k = (I — G (k)" (G (2x) (Glak) — mk) + )

Mn this case, the successive approximations cannot converge faster than g-linearly [6].
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with (x)r>0 C X, then condition
e = O([ay, — G(xx)[?), as k — oo,

is equivalent to (2).

We have also noticed in [5] that, under the assumption ||G'(z)| < ¢ < 1 for
all z in a certain neighborhood of x*, and for a given K > 0, a natural choice
(implied by the Banach lemma) for Jj is:

0 = (I + -+ G/(xk)i’“)G'(xk)(G(xk) — xk),

with 7 such that
q

L < Kk — Glaw). (3)

l—-q —

When applying Theorem 1.2 to characterize the quadratic convergence of the
resulted sequence

Tp+1 = G(zg) + (I-l- R G’(wk)l’“)G’(xk)(G(xk) —x), k>0, (4)
with i given by (3), we must assume that this sequence converges to the fixed
point z*. But is this assumption reasonable? The purpose of this note is to show

that under certain natural conditions the sequence converges to x*, so the answer
is positive.

2 Main result

First of all, we remark that the fixed point problem is equivalent to solving
F(z) =0, with F(z) =z — G(x),

for which the Newton method generates the iterates

sy = —F'(xx) " F () (5)
Tht1 :xk—i—skN, k=0,1,....
In this setting, iterations (4) may be rewritten as
Try1 = Tk + (I + G/(xk) +...+ G/(xk)ik—’_l)(G(xk) — xk) (6)
=xr+sg, K=0,1,...,
with ij s.t. L < K| F(ay)]),

i.e., as quasi-Newton iterations (see, e.g., [11], [8], [7])-
We obtain the following sufficient Kantorovich-type conditions for the con-
vergence to x* of these iterates.
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Theorem 2.1 Assume that G is differentiable on the domain Q, with G’ bounded
on by

IG'(z)| <qg<1, Ve €Q, (7)
and Lipschitz continuous:
IG' (@) = G'W)ll < Lz —yll, Yo,y e
Let xg € Q and K > 0 be chosen such that
v = (sl + K(1+ ) [F(ao)| < 1, (8)
and suppose that By(zo) = {x € X : ||z — zo|| <7} S Q for
r= m [ F (o) -

Then the elements of the sequence defined by (6) remain in the ball B, (zo)
and converge to a fixed point z* of G, which is unique in this ball. According to
Theorem 1.2, the convergence is quadratic.

Proof. Recall first [11, 3.2.12] that the Lipschitz hypothesis on G’ implies that
IG(y) ~ G@) = G'(@)(y —2)ll < § |y —«|*, VoyeQ

while (7) attracts the existence of (I — G'(2))™' = I+ G'(z) + ... + G'(2)*
and the bound

11— G @)Y < &, Vzeq.

q7
Our hypotheses imply the following inequalities:
Isoll < 2 |1 (xo)|
i.e., 71 € B,(rg) and also
[F (@) = || F(z1) = F(ao) = F'(o)sg' | (by (5))
< ||[F(x1) = F(xo) — F'(wo)soll + || F'(x0) (55" — s0)|
|G (1) = G(xo) — G'(xo)sol| + (1 +q) ||s5" — 30||
Llsol* + (1 + q) || G (20) 10+2(I+Gl(xo) ) F (o)
LO4q+...+ ¢ |F(o)|* + G (1+Q) [ (o)l
ig+2\2
Lo 1 (o) |* + K (1+q) ||F<xo>||

2(1—q)?
V[ E(zo)ll -

/\\/\

IN I/\

IN
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In an analogous fashion, we obtain by induction that for all k& > 2

1@ < (sl + KL+ ) [Fzi)]?
< v F(ai-)]
< v |[F(ao)].

Vk,—l
1—q

ok = zp-1]l = llse—1ll < 25 1P (z-1)] < [ (o)l

= 2ol < ok = wacl| + ...+ o1 — zoll < =y IF(o)l] =
It follows that
[Zk4m — Tl < | Thtm = Togm—1ll + - + [|Tr1 — ]
k+m—1 k
< S Lt | ()|

k
m [1E(zo)ll

IN

which shows that (xk)r>0 is a Cauchy sequence, and therefore converges to a
certain * € B,(zo). By the definition and continuity of F, z* is a fixed point of
G, which is unique in B,.(z9) (and also in Q) since G is a contraction. |

We note that condition (8) contains certain natural demands: ||F(xo)|| is
sufficiently small (which holds, e.g., when ¢ is sufficiently close to z*), ¢ is suf-
ficiently small (in accordance with the results in [6]), the Lipschitz constant L
is sufficiently small (the graph of G is close to a constant in case X = R) and
K is sufficiently small (the linear systems are solved with increasingly precision,
the iterates approaching to those given by the Newton method—see the classical
results of Dennis and Moré [8]).
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