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Sufficient convergence conditions for certain

accelerated successive approximations

Emil Cătinaş

Abstract

We have recently characterized the q-quadratic convergence of the perturbed

successive approximations. For a particular choice of the parameters, these

sequences resulted as accelerated iterations toward a fixed point.

We give here a Kantorovich-type result, which provides sufficient condi-

tions ensuring the convergence of the accelerated iterates.

1 Introduction

Let (X, ‖·‖) be a Banach space and G : Ω ⊆ X → Ω a nonlinear mapping having
x∗ ∈ intΩ as fixed point:

x∗ = G(x∗).

We are interested in the q-quadratic convergence toward x∗ of the sequences
of successive approximation type. Recall that an arbitrary sequence (yk)k≥0 ⊂ X

converges (q-)quadratically to its limit ȳ ∈ X if [11], [12], [13]

inf
{

α ∈ [1,+∞) : Qα{yk} = +∞
}

= 2,

where

Qα{yk} =















0, if yk = ȳ, for all but finitely many k,

lim sup
k→∞

‖yk+1 − ȳ‖

‖yk − ȳ‖α
, if yk 6= ȳ, for all but finitely many k,

+∞, otherwise.

In the case when 0 < Q2{yk} < +∞, one obtains the well known estimate of the
form

‖yk+1 − ȳ‖ ≤
(

Qp{yk}+ ε
)

‖yk − ȳ‖2 , for all k ≥ k0
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(in the sense that for all ε > 0 there exists k0 ≥ 0 such the above inequalities
hold).

The successive approximations converging quadratically to x∗ are character-
ized by the following result.

Theorem 1.1 [6] Assume that G is differentiable on a neighborhood D of x∗, with

the derivative G′ Lipschitz continuous:

‖G′(x)−G′(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ D.

Suppose further that for a certain initial approximation x0 ∈ D, the successive

approximations

xk+1 = G(xk), k ≥ 0,

converge to x∗, and I −G′(xk) are invertible starting from a certain step.

Then the convergence is with order 2 if and only if G′ has a zero eigenvalue

and, starting from a certain step, the corrections xk+1 − xk are corresponding

eigenvectors:

G′(x∗)(xk+1 − xk) = 0, ∀k ≥ k0.

This condition holds equivalently iff the errors xk−x∗ are corresponding eigenvec-

tors:

G′(x∗)(xk − x∗) = 0, ∀k ≥ k0,

or iff

xk ∈ x∗ +KerG′(x∗), ∀k ≥ k0.

This result implies that if G′ has no eigenvalue 0, there exists no sequence of
successive approximations converging to x∗ with order 2. 1 In such a case, one may
choose to consider for some (δk)k≥0 ⊂ X the perturbed successive approximations

xk+1 = G(xk) + δk, k ≥ 0. (1)

Their quadratic convergence is characterized by the following result, which does
not require the existence of the eigenvalue 0.

Theorem 1.2 [6] Suppose that G satisfies the assumptions of Theorem 1.1, and
that the sequence (1) of perturbed successive approximations converges to x∗. Then

the convergence is with q-order 2 iff

‖G′(xk)(xk −G(xk)) + (I −G′(xk))δk‖ = O(‖xk −G(xk)‖
2), as k → ∞. (2)

In [5] we have shown that if we write

δk = (I −G′(xk))
−1

(

G′(xk)(G(xk)− xk) + γk
)

1In this case, the successive approximations cannot converge faster than q-linearly [6].
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with (γk)k≥0 ⊂ X, then condition

γk = O(‖xk −G(xk)‖
2), as k → ∞,

is equivalent to (2).
We have also noticed in [5] that, under the assumption ‖G′(x)‖ ≤ q < 1 for

all x in a certain neighborhood of x∗, and for a given K > 0, a natural choice
(implied by the Banach lemma) for δk is:

δk =
(

I + · · ·+G′(xk)
ik
)

G′(xk)(G(xk)− xk),

with ik such that
qik+2

1−q
≤ K‖xk −G(xk)‖. (3)

When applying Theorem 1.2 to characterize the quadratic convergence of the
resulted sequence

xk+1 = G(xk) +
(

I + · · ·+G′(xk)
ik
)

G′(xk)(G(xk)− xk), k ≥ 0, (4)

with ik given by (3), we must assume that this sequence converges to the fixed
point x∗. But is this assumption reasonable? The purpose of this note is to show
that under certain natural conditions the sequence converges to x∗, so the answer
is positive.

2 Main result

First of all, we remark that the fixed point problem is equivalent to solving

F (x) = 0, with F (x) = x−G(x),

for which the Newton method generates the iterates

sNk = −F ′(xk)
−1F (xk) (5)

xk+1 = xk + sNk , k = 0, 1, . . . .

In this setting, iterations (4) may be rewritten as

xk+1 = xk + (I +G′(xk) + . . .+G′(xk)
ik+1)(G(xk)− xk) (6)

:= xk + sk, k = 0, 1, . . . ,

with ik s.t. qik+2

1−q
≤ K‖F (xk)‖,

i.e., as quasi-Newton iterations (see, e.g., [11], [8], [7]).
We obtain the following sufficient Kantorovich-type conditions for the con-

vergence to x∗ of these iterates.
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Theorem 2.1 Assume that G is differentiable on the domain Ω, with G′ bounded

on Ω by

‖G′(x)‖ ≤ q < 1, ∀x ∈ Ω, (7)

and Lipschitz continuous:

‖G′(x) −G′(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Ω.

Let x0 ∈ Ω and K > 0 be chosen such that

ν =
(

L
2(1−q)2 +K(1 + q)

)

‖F (x0)‖ < 1, (8)

and suppose that B̄r(x0) =
{

x ∈ X : ‖x− x0‖ ≤ r
}

⊆ Ω for

r = 1
(1−ν)(1−q) ‖F (x0)‖ .

Then the elements of the sequence defined by (6) remain in the ball B̄r(x0)
and converge to a fixed point x∗ of G, which is unique in this ball. According to

Theorem 1.2, the convergence is quadratic.

Proof. Recall first [11, 3.2.12] that the Lipschitz hypothesis on G′ implies that

‖G(y)−G(x) −G′(x)(y − x)‖ ≤ L
2 ‖y − x‖

2
, ∀x, y ∈ Ω,

while (7) attracts the existence of (I −G′(x))−1 = I +G′(x) + . . .+G′(x)k + . . .

and the bound
∥

∥(I −G′(x))−1
∥

∥ ≤ 1
1−q

, ∀x ∈ Ω.

Our hypotheses imply the following inequalities:

‖s0‖ ≤ 1
1−q

‖F (x0)‖

i.e., x1 ∈ B̄r(x0) and also

‖F (x1)‖ =
∥

∥F (x1)− F (x0)− F ′(x0)s
N
0

∥

∥ (by (5))

≤ ‖F (x1)− F (x0)− F ′(x0)s0‖+
∥

∥F ′(x0)(s
N
0 − s0)

∥

∥

≤ ‖G(x1)−G(x0)−G′(x0)s0‖+ (1 + q)
∥

∥sN0 − s0
∥

∥

≤ L
2 ‖s0‖

2 + (1 + q)
∥

∥G′(x0)
i0+2(I +G′(x0) + . . .)F (x0)

∥

∥

≤ L
2 (1 + q + . . .+ qi0+1)2 ‖F (x0)‖

2 + qi0+2

1−q
(1 + q) ‖F (x0)‖

≤ L(1−qi0+2)2

2(1−q)2 ‖F (x0)‖
2 +K(1 + q) ‖F (x0)‖

2

≤ ν ‖F (x0)‖ .
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In an analogous fashion, we obtain by induction that for all k ≥ 2

‖F (xk)‖ ≤
(

L
2(1−q)2 +K(1 + q)

)

‖F (xk−1)‖
2

≤ ν ‖F (xk−1)‖

...

≤ νk ‖F (x0)‖ ,

‖xk − xk−1‖ = ‖sk−1‖ ≤ 1
1−q

‖F (xk−1)‖ ≤ νk−1

1−q
‖F (x0)‖ ,

‖xk − x0‖ ≤ ‖xk − xk−1‖+ . . .+ ‖x1 − x0‖ ≤ 1
(1−ν)(1−q) ‖F (x0)‖ = r.

It follows that

‖xk+m − xk‖ ≤ ‖xk+m − xk+m−1‖+ . . .+ ‖xk+1 − xk‖

≤ νk+m−1+...+νk

(1−q) ‖F (x0)‖

≤ νk

(1−ν)(1−q) ‖F (x0)‖ ,

which shows that (xk)k≥0 is a Cauchy sequence, and therefore converges to a
certain x∗ ∈ B̄r(x0). By the definition and continuity of F, x∗ is a fixed point of
G, which is unique in B̄r(x0) (and also in Ω) since G is a contraction.

We note that condition (8) contains certain natural demands: ‖F (x0)‖ is
sufficiently small (which holds, e.g., when x0 is sufficiently close to x∗), q is suf-
ficiently small (in accordance with the results in [6]), the Lipschitz constant L

is sufficiently small (the graph of G is close to a constant in case X = R) and
K is sufficiently small (the linear systems are solved with increasingly precision,
the iterates approaching to those given by the Newton method—see the classical
results of Dennis and Moré [8]).

Acknowledgement: The author would like to thank Professor Detlef Mache
for his kind support regarding the participation to the IBoMat04 Conference.

References

[1] I. Argyros, On the convergence of the modified contractions, J. Comp. Appl.
Math., 55 (1994), 183–189.

[2] C. Brezinski, Dynamical systems and sequence transformations, J. Phys. A,
34 (2001), pp. 10659–10669.

[3] C. Brezinski and J.-P. Chehab, Nonlinear hybrid procedures and fixed point

iterations, Numer. Funct. Anal. Optimiz., 19 (1998), pp. 465–487.



6 Emil Cătinaş
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