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1. Introduction

The iterative methods play a crucial role in approximating the solutions of nonlinear equations. The methods with super-
linear convergence offer good approximations with a reduced number of steps. In a series of papers [1–11] the authors obtain
different methods or modifications of some known methods, in order to achieve iterative methods with higher convergence
orders.

The Steffensen, Aitken or Aitken–Steffensen methods lead to sequences having at least order 2 of convergence. A natural
approach to generalize such methods can be obtained with the aid of inverse polynomial interpolation (Lagrange, Hermite,
Taylor, etc.), with controlled interpolation nodes [12–17]. One of the advantages of such methods is the fact that the inter-
polation nodes may be controlled such that the methods offer sequences with bilateral approximations (both from above and
from below) of the solutions. This aspect offers the control of the error at each step [14,16].

In this paper we shall extend a Steffensen type method using the Hermite inverse interpolatory polynomial of degree 2
with two nodes. In [13] we have shown that among all the Steffensen–Hermite methods with two nodes of arbitrary orders,
the optimal efficiency index is attained in the case when one node is simple and the other one is double (see [18] for def-
initions of efficiency index); we have also shown there that the convergence order of this method is 3. Here we provide new
convergence conditions, which offer bilateral approximations of the solution; these are very useful for controlling the error
at each iteration step. In Section 2, we shall study the convergence of this method, and in Section 3 we shall indicate a meth-
od of constructing the auxiliary functions used for controlling the interpolations nodes. Some numerical examples will be
shown in Section 4.

Let c; d 2 R; c < d; f : ½c; d� ! R; g : ½c; d� ! ½c; d� and consider the following equivalent equations:
f ðxÞ ¼ 0; ð1Þ
gðxÞ ¼ x: ð2Þ
As usually, the first order divided difference of f at a; b 2 ½c; d�will be denoted by ½a; b; f �; if a is double, then ½a; a; f � ¼ f 0ðaÞ. For
the second order divided differences we have
. All rights reserved.
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½a; b; e; f � ¼ ½b; e; f � � ½a; b; f �
e� a

; a; b; e 2 ½c; d�
and if a is double, then
½a; a; b; f � ¼ ½a; b; f � � f 0ðaÞ
b� a

:

Let F ¼ f ð½c; d�Þ and assume the following conditions hold:

(A) f 2 C3ð½c; d�Þ and f 0ðxÞ – 0 8x 2 ½c; d�.

By A it follows that f : ½c; d� ! F is invertible so there exists f�1 : F ! ½c; d�.
Let ai 2 ½c; d�; i ¼ 1;2 and bi ¼ f ðaiÞ; i ¼ 1;2; i.e. ai ¼ f�1ðbiÞ, and denote a01 ¼ ðf�1ðb1ÞÞ0 ¼ 1

f 0 ða1Þ
: Consider now the inverse

interpolatory Hermite polynomial having b1 as double node and b2 as simple node, i.e. the second degree polynomial H
determined such that
Hðb1Þ ¼ a1;

H0ðb1Þ ¼ a01;

Hðb2Þ ¼ a2:

ð3Þ
Using the divided differences on multiple nodes, the resulted Hermite polynomial may be expressed in one of the following
equivalent ways [17]:
HðyÞ ¼ a1 þ ½b1; b2; f�1�ðy� b1Þ þ ½b1; b2; b1; f�1�ðy� b1Þðy� b2Þ; ð4Þ
HðyÞ ¼ a1 þ ½b1; b1; f�1�ðy� b1Þ þ ½b1; b1; b2; f�1�ðy� b1Þ2 ð5Þ
or
HðyÞ ¼ a2 þ ½b2; b1; f�1�ðy� b2Þ þ ½b2; b1; b1; f�1�ðy� b2Þðy� b1Þ: ð6Þ
The remainder is given by
f�1ðyÞ � HðyÞ ¼ ½y; b1; b1; b2; f�1�ðy� b1Þ2ðy� b2Þ; y 2 F: ð7Þ
It can be easily seen that the representations given by (4)–(6) verify condition (3).

(B) Assume that Eq. (1) has a solution �x 2 ½c; d�.

By A it follows that the solution �x is unique in ½c; d�.
One has �x ¼ f�1ð0Þ, whence, by (4)–(7), one obtains the following representations for �x:
�x ¼ a1 � ½b1; b2; f�1�b1 þ ½b1; b2; b1; f�1�b1b2 � r; ð8Þ
�x ¼ a1 � ½b1; b1; f�1�b1 þ ½b1; b1; b2; f�1�b2

1 � r ð9Þ
or
�x ¼ a2 � ½b2;b1; f�1�b2 þ ½b2; b1; b1; f�1�b2b1 � r; ð10Þ
where
r ¼ ½0; b1; b1; b2; f�1�b2
1b2: ð11Þ
If in (8), (9) or (10) we neglect the remainder r, one may obtain an approximation for �x, denoted by a3:
a3 ¼ a1 � ½b1; b2; f�1�b1 þ ½b1; b2; b1; f�1�b1b2 ð12Þ
or
a3 ¼ a1 � ½b1; b1; f�1�b1 þ ½b1; b1; b2; f�1�b2
1 ð13Þ
or
a3 ¼ a2 � ½b1; b2; f�1�b2 þ ½b1; b1; b2; f�1�b1b2: ð14Þ
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It can be easily seen that
½b1; b1; f�1� ¼ 1
f 0ða1Þ

; ð15Þ

½b1; b2; f�1� ¼ 1
½a1; a2; f � ; ð16Þ

½b1; b1; b2; f�1� ¼ � ½a1; a1; a2; f �
½a1; a2; f �2f 0ða1Þ

: ð17Þ
For the divided difference ½0; b1; b1; b2; f�1� we take into account hypothesis A, i.e. f�1 2 C3ðFÞ and apply the mean value for-
mula. There exists g 2 intE0 such that
½0; b1; b1; b2; f�1� ¼ ðf
�1ðgÞÞ000

3!
; ð18Þ
where E0 is the smallest interval containing b1; b2 and 0.
Since f is invertible it follows that there exists n 2 inte0 such that g ¼ f ðnÞ, where e0 is the smallest interval containing

a1; a2 and �x.
It can be easily seen that [15,17,19]
ðf�1ðyÞÞ000 ¼ 3ðf 00ðxÞÞ2 � f 0ðxÞf 000ðxÞ
ðf 0ðxÞÞ5

: ð19Þ
Relations (15) and (16) lead to the following representation for the third order divided difference
½0; b1; b1; b2; f�1� ¼ 3ðf 00ðnÞÞ2 � f 0ðnÞf 000ðnÞ
6ðf 0ðnÞÞ5

: ð20Þ
Let xn 2 ½c; d� be an approximation of the solution �x. If we set in (12)–(14) a1 ¼ xn; a2 ¼ gðxnÞ and we take into account rela-
tions (15)–(17) then we obtain a new approximation xnþ1 for �x [16,13]:
xnþ1 ¼ xn �
f ðxnÞ

½xn; gðxnÞ; f � �
½xn; xn; gðxnÞ; f �f ðxnÞf ðgðxnÞÞ

½xn; gðxnÞ; f �2f 0ðxnÞ
; n ¼ 0;1 . . . ; ð21Þ

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

� ½xn; xn; gðxnÞ; f �f 2ðxnÞ
½xn; gðxnÞ; f �2f 0ðxnÞ

; n ¼ 0;1 . . . ; ð22Þ

xnþ1 ¼ gðxnÞ �
f ðgðxnÞÞ
½xn; gðxnÞ; f � �

½xn; xn; gðxnÞ; f �f ðxnÞf ðgðxnÞÞ
½xn; gðxnÞ; f �2f 0ðxnÞ

; n ¼ 0;1 . . . ð23Þ
It can be easily seen that (21)–(23) yield in fact a same approximation xnþ1.
Analogously, if in (12)–(14) we set a1 ¼ gðxnÞ; a2 ¼ xn we obtain the approximation xnþ1 in one of the following (equiva-

lent) forms
xnþ1 ¼ gðxnÞ �
f ðgðxnÞÞ
½xn; gðxnÞ; f � �

½xn; gðxnÞ; gðxnÞ; f �f ðxnÞf ðgðxnÞÞ
½xn; gðxnÞ; f �2f 0ðgðxnÞÞ

; n ¼ 0;1; . . . ð24Þ

xnþ1 ¼ gðxnÞ �
f ðgðxnÞÞ
f 0ðgðxnÞÞ

� ½xn; gðxnÞ; gðxnÞ; f �f 2ðgðxnÞÞ
½xn; gðxnÞ; f �2f 0ðgðxnÞÞ

; n ¼ 0;1; . . . ð25Þ

xnþ1 ¼ xn �
f ðxnÞ

½xn; gðxnÞ; f � �
½xn; gðxnÞ; gðxnÞ; f �f ðxnÞf ðgðxnÞÞ

½xn; gðxnÞ; f �2f 0ðgðxnÞÞ
; n ¼ 0;1; . . . ð26Þ
Obviously, (24)–(26) represent the same approximation of �x.
The approximation xnþ1 given by (21)–(23) obeys
�x� xnþ1 ¼ �½0; f ðxnÞ; f ðxnÞ; f ðgðxnÞÞ; f�1�f 2ðxnÞf ðgðxnÞÞ: ð27Þ
Analogously, for xnþ1 given by (24)–(26) one obtains:
�x� xnþ1 ¼ �½0; f ðxnÞ; f ðgðxnÞÞ; f ðgðxnÞÞ; f�1�f ðxnÞf 2ðgðxnÞÞ: ð28Þ
In this paper we shall study both the convergence of the sequence ðxnÞnP0 given by any of relations (21)–(23) and of the se-
quence given by any of relations (24)–(26).

Under some reasonable conditions on f regarding monotonicity and convexity on ½c; d�; we shall show that de above meth-
ods yield monotone sequences. Moreover, these iterations provide bilateral sequences, approximating the solution both from
above and from below, which lead so a more precise control of the error [13–15].
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2. Study of convergence

For the study of method given by (21)–(23), besides A and B we consider the following hypotheses:

(C) Eqs. (1) and (2) are equivalent;
(D) function g is continuous and decreasing on ½c; d�;
(E) function Ef ðxÞ ¼ 3ðf 00ðxÞÞ2 � f 0ðxÞf 000ðxÞ 6 0;8x 2 ½c; d�.

In the following we shall study the 4 situations when f does not change the monotony and convexity on ½c; d�.

Theorem 1. If functions f, g and x0 2 ½c; d� obey A–E and, moreover,

i1. f 0ðxÞ > 0;8x 2 ½c; d�;
ii1. f 00ðxÞP 0;8x 2 ½c; d�;

iii1. gðx0Þ 2 ½c; d�,

then the following properties hold:

j1. If f ðx0Þ < 0 then sequence ðxnÞnP0 given by (21)–(23) is increasing and bounded, while the sequence ðgðxnÞÞnP0 is decreasing
and bounded;

jj1. If f ðx0Þ > 0 then sequence ðxnÞnP0 is decreasing and bounded, while ðgðxnÞÞnP0 is increasing and bounded;
jjj1. lim xn ¼ lim gðxnÞ ¼ �x;

jv1. j�x� xnþ1j 6 jgðxnþ1Þ � xnþ1j;n ¼ 0;1; . . .

Proof. Let xn 2 ½c; d� be an approximation for �x such that f ðxnÞ < 0 and gðxnÞ 2 ½c; d�. By i1 it follows that xn < �x, while by (D)
gðxnÞ > �x, i.e., f ðgðxnÞÞ > 0. From i1; ii1, and (21) it can be easily seen that xnþ1 > xn and gðxnþ1Þ < gðxnÞ. By (18)–(20), (27) it
follows that exists nn 2�xn; gðxnÞ½ such that
�x� xnþ1 ¼ �
Ef ðnnÞ

6ðf 0ðnnÞÞ5
f 2ðxnÞf ðgðxnÞÞ: ð29Þ
The above equality, together with (E) and i1 imply xnþ1 < �x, which in turn attracts gðxnþ1Þ > �x. The property j1 is proved. Let
xn 2 ½c; d� such that f ðxnÞ > 0 and gðxnÞ 2 ½c; d�. Obviously, xn > �x and gðxnÞ < �x, i.e. f ðgðxnÞÞ < 0. By i1; ii1 and (22) it follows
xnþ1 < xn. From (29) we get �x < xnþ1, i.e. gðxnþ1Þ < �x. These prove jj1. For proving jjj1, let limn!1xn ¼ ‘. Passing to limit
n!1 in (21) and taking into account the continuity of f and g leads to f ð‘Þ ¼ 0. Since the solution �x is unique on ½c; d�, it
follows ‘ ¼ �x. Relation limn!1gðxnÞ ¼ �x is obvious, as well as property iv1. h

Theorem 2. If x0 2 ½c; d� and functions f, g verify A–E and, moreover,

i2. f 0ðxÞ < 0;8x 2 ½c; d�;
ii2. f 00ðxÞP 0;8x 2 ½c; d�;

iii2. gðx0Þ 2 ½c; d�,

then

j2. If f ðx0Þ > 0, then the sequence ðxnÞnP0, generated by any of the relations (21)–(23), is increasing and bounded, while
sequence ðgðxnÞÞnP0 is decreasing and bounded;

jj2. If f ðx0Þ < 0, then the sequence ðxnÞnP0 generated by any of the relations (21)–(23) is decreasing and bounded, while
sequence ðgðxnÞÞnP0 is increasing and bounded;

jjj2. Properties jjj1 and jv1 of Theorem 1 hold true.

Proof. Let xn 2 ½c; d� such that f ðxnÞ > 0 and gðxnÞ 2 ½c; d�. By i2 it follows xn < �x i.e. gðxnÞ > �x and f ðgðxnÞÞ < 0. If we take into
account i2; ii2 and (22), we get xnþ1 > xn. Hypotheses (E) and i1, together with (29) ensure relation xnþ1 < �x, i.e. gðxnþ1Þ > �x.
Since xnþ1 > xn it follows gðxnþ1Þ < gðxnÞ. Property j2 is proved. Let xn 2 ½c; d� such that f ðxnÞ < 0 and gðxnÞ 2 ½c; d�. Obviously,
from i2 it follows xn > �x and from (D) it follows gðxnÞ < �x, i.e. f ðgðxnÞÞ > 0. By i2; ii2 and (21) we get xnþ1 < xn. By (29), taking
into account (E) and i2 it follows xnþ1 > �x, i.e. gðxnþ1Þ < �x. Property jj2 is proved. Property jjj2 is obvious. h

In the following, instead of Eq. (1) we shall consider equation
hðxÞ ¼ 0; ð30Þ

where h : ½c; d� ! R;hðxÞ ¼ �f ðxÞ.
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We notice that if function Ef ðxÞ verifies (E), then function EhðxÞ ¼ 3ðh00ðxÞÞ2 � h0ðxÞh000ðxÞ ¼ Ef ðxÞ verifies hypothesis (E).
Taking into account the above relations, the following assertions are consequences of Theorem 1 respectively

Theorem 2:

Corollary 3. If x0 2 ½c; d� and functions f, g verify hypotheses A–E and, moreover,

c1. f 0ðxÞ < 0;8x 2 ½c; d�;
cc1. f 00ðxÞ 6 0;8x 2 ½c; d�;

ccc1. gðx0Þ 2 ½c; d�,

then the following properties hold:

k1. If f ðx0Þ > 0, then sequence ðxnÞnP0 generated by (21)–(23) is increasing and bounded, while sequence ðgðxnÞÞnP0 is decreas-
ing and bounded;

kk1. If f ðx0Þ < 0, then sequence ðxnÞnP0 generated by (21)–(23) is decreasing and bounded, while sequence ðgðxnÞÞnP0 is increas-
ing and bounded;

kkk1. The properties jjj1 and jv1 of Theorem 1 hold true.

Proof. For the proof of this theorem we notice that if f verifies hypotheses of this Corollary, then function h verifies the
assumptions of Theorem 1, so properties k1–kkk1 are obvious. h

Corollary 4. If x0 2 ½c; d� and functions f, g satisfy assumptions A-E and, moreover,

c2. f 0ðxÞ > 0;8x 2 ½c; d�;
cc2: f 00ðxÞ 6 0;8x 2 ½c; d�;

ccc2. gðx0Þ 2 ½c; d�,

then the following are true:
k2. If f ðx0Þ < 0 then sequence ðxnÞnP0 generated by (21)–(23) is increasing and bounded while sequence ðgðxnÞÞnP0 is decreasing
and bounded;

kk2. If f ðx0Þ > 0 then sequence ðxnÞnP0 generated by (21)–(23) is decreasing and bounded, while sequence ðgðxnÞÞnP0 is increas-
ing and bounded;

kkk2. The properties jjj1 and jv1 of Theorem 1 hold true.

Proof. The proof is analogous to the proof of Corollary 3. h

In the following we shall study the convergence of the sequence ðxnÞnP0 generated by (24)–(26). Instead of hypothesis (E)
we shall assume further hypothesis

(E0) Ef ðxÞP 0; 8x 2 ½c; d�.
Theorem 5. If x0 2 ½c; d� and functions f, g verify assumptions A–D, E0 and moreover

i5. f 0ðxÞ > 0;8x 2 ½c; d�;
ii5. f 00ðxÞP 0;8x 2 ½c; d�;

iii5. gðx0Þ 2 ½c; d�,

then the following are true:

j5. If f ðx0Þ < 0 then sequence ðxnÞnP0 generated by any of (24)–(26) is increasing and bounded while sequence ðgðxnÞnP0 is
decreasing and bounded;

jj5. Properties jjj1 and jv1 of Theorem 1 hold true.
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Proof. Let xn 2 ½c; d� such that f ðxnÞ < 0 and gðxnÞ 2 ½c; d�. Obviously, by i5 it follows xn < �x and by 2) we get gðxnÞ > �x, i.e.
f ðgðxnÞÞ > 0. Properties i5; ii5 and (26) imply xnþ1 > xn. Properties (18)–(20), (28) attract the existence of nn 2�xn; gðxnÞ½ such that
�x� xnþ1 ¼ �
Ef ðnnÞ

6ðf 0ðnnÞÞ5
f ðxnÞf 2ðgðxnÞÞ: ð31Þ
This equality, together with ðE0Þ; i5 and inequality f ðxnÞ < 0 lead to �x > xnþ1 and gðxnþ1Þ > �x. From xnþ1 > xn and (D) we get
gðxnþ1Þ < gðxnÞ. Property j5 is proved. Property jj5 is obvious if we take into account the proof of Theorem 1. h

Theorem 6. If x0 2 ½c; d� and functions f, g obey A–D, E0 and, moreover,

i6. f 0ðxÞ < 0;8x 2 ½c; d�;
ii6. f 00ðxÞP 0;8x 2 ½c; d�;

iii6. gðx0Þ 2 ½c; d�,

then the following are true:

j6. If f ðx0Þ < 0 then sequence ðxnÞnP0 generated by (24)–(26) is decreasing and bounded, while sequence ðgðxnÞÞnP0 is increas-
ing and bounded;

jj6. Properties jjj1 and jv1 of Theorem 1 hold true.

Proof. The proof is analogous to the proof of Theorem 5. h

If instead of Eq. (1) we consider Eq. (30) then the following consequences of Theorem 5 and respectively Theorem 6 are
true:

Corollary 7. If x0 2 ½c; d� and functions f, g verify A–D, E0 and

c7. f 0ðxÞ < 0;8x 2 ½c; d�;
cc7. f 00ðxÞ 6 0;8x 2 ½c; d�;

ccc7. gðx0Þ 2 ½c; d�,

then

k7. If f ðx0Þ > 0 then sequence ðxnÞnP0 generated by (24)–(26) is increasing and bounded, while ðgðx0ÞÞnP0 is decreasing and
bounded;

kk7. The properties jjj1 and jv1 of Theorem 1 are true.

Corollary 8. If x0 2 ½c; d� and functions f, g verify A–D, E0 and

c8. f 0ðxÞ > 0;8x 2 ½c; d�;
cc8. f 00ðxÞ 6 0;8x 2 ½c; d�;

ccc8. gðx0Þ 2 ½c; d�,

then

k8. If f ðx0Þ > 0 then sequence ðxnÞnP0 generated by (24)–(26) is decreasing and bounded while sequence ðgðxnÞÞnP0 is increasing
and bounded;

kk8. Properties jjj1 and jv1 of Theorem 1 are true.

The convergence order of the sequences studied above is given in the following results.

Theorem 9. Under the hypotheses of Theorem 1 if, moreover,

i9. The function g is derivable at �x, and the divided differences ½x; �x; g� are bounded on ½c; d�,

then the q-convergence order of the sequence ðxnÞnP0 generated by any of the relations (21)–(23) is equal to 3.

Proof. Taking into account equalities f ð�xÞ ¼ 0; f ðgð�xÞÞ ¼ 0, relation (29) may be written in the form
�x� xnþ1 ¼
Ef ðnnÞ

6ðf 0ðnnÞÞ
� f ðxnÞ � f ð�xÞ

xn � �x

� �2 f ðgðxnÞÞ � f ðgð�xÞÞ
gðxnÞ � gð�xÞ � gðxnÞ � gð�xÞ

xn � �x
� ðxn � �xÞ3:
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Now, by hypotheses of Theorem 1 there exist mn;ln 2�xn; gðxnÞ½ such that
�x� xnþ1 ¼ �
Ef ðnnÞ

6ðf 0ðnnÞÞ5
� ðf 0ðlnÞÞ

2 � f 0ðgðmnÞÞ � ½xn; �x; g� � ðxn � �xÞ3:
By A; i1 and i9 it follows the existence of a constant C > 0 such that
j�x� xnþ1j 6 C � j�x� xnj3;
which shows the q-convergence order 3 of the sequence. h

Theorem 10. Under the hypotheses of Theorem 5 if, moreover, hypothesis i9 of Theorem 9 hold, then the convergence order of the
sequence generated by any of relations (24)–(26) is 3.

Proof. The proof is obtained in a similar manner as in Theorem 9. h
3. Choosing the auxiliary function

We notice that in all the results of the previous section, the continuity and monotony of g are essential (hypothesis (D)
requires that g is continuous and decreasing).

In the following we shall point out a simple modality of obtaining such a function in accordance with the monotony and
convexity of f.

1. If function f verifies: f 0ðxÞ > 0 and f 00ðxÞP 0;8x 2 ½c; d�, then it can be easily seen that g can be chosen in the following
way:
gðxÞ ¼ x� f ðxÞ
f 0ðaÞ :

More generally, if k1 2 ½0; f 0ðaÞ� then we may take

gðxÞ ¼ x� f ðxÞ
k1

:

It can be easily seen that g0ðxÞ 6 0, i.e., g is decreasing.
2. When f 0ðxÞ > 0; f 00ðxÞ 6 0; 8x 2 ½c; d�, we may take
gðxÞ ¼ x� f ðxÞ
f 0ðbÞ ;

more generally, if k2 2�0; f 0ðbÞ½ then we may take

gðxÞ ¼ x� f ðxÞ
k2

and hypothesis (D) is fulfilled.
3. If f 0ðxÞ < 0; f 00ðxÞP 0; 8x 2 ½c; d� one may take
gðxÞ ¼ x� f ðxÞ
f 0ðbÞ

or, more generally, for k3 2 ½f 0ðbÞ;0Þ one may take

gðxÞ ¼ x� f ðxÞ
k3

:

4. Finally, if f 0ðxÞ < 0; f 00ðxÞ 6 0; 8x 2 ½c; d� then one may take
gðxÞ ¼ x� f ðxÞ
f 0ðaÞ

or more generally, if k4 2 ½f 0ðaÞ;0Þ one may take

gðxÞ ¼ x� f ðxÞ
k4

:
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4. Numerical examples

(a) Let f ðxÞ ¼ ex þ 10x� 6. We notice that equation f ðxÞ ¼ 0 has a solution �x 2�0;1½; f ð0Þ ¼ �5; f ð1Þ ¼ eþ 4. This solution is
unique since f 0ðxÞ ¼ ex þ 10 > 0;8x 2 ½0;1�. The second and third derivatives of f are f 00ðxÞ ¼ f 000ðxÞ ¼ ex, while Ef ðxÞ is
given by Ef ðxÞ ¼ 2exðex � 5Þ, such that for x 2 ½0;1� we have Ef ðxÞ < 0. Hypotheses of Theorem 1 are considered. Let
g be given by
Table 1
Numeri

i

0
1
2

Table 3
Numeri

i

0
1
2

Table 2
Numeri

i

0
1
2

gðxÞ ¼ x� f ðxÞ
f 0ð0Þ ;

i.e.,

gðxÞ ¼ �ex þ xþ 6
11

:

We take x0 ¼ 0 and we have gð0Þ ¼ 5
11 2 ½0;1�. If we consider x0 ¼ 1 then gð1Þ ¼ 7�e

11 2 ½0;1�. The numerical results in
Tables 1 and 2 are in accordance with the properties of the sequences ðxiÞ and ðgðxiÞÞ proved in Theorem 1. In Tables
1–6 we have written only the first two digits for the mantissa of f ðxiÞ and gðxiÞ � xi, since only the magnitude of these
quantities is important.
(b) Consider the equation
f ðxÞ ¼ xex þ 6xþ 6 ¼ 0

for x 2 ½�1;0�. Since f ð0Þ ¼ 6; f ð�1Þ ¼ � 1
e it follows that the above equation has a solution �x 2 ½�1;0�. The derivatives

of f are

f 0ðxÞ ¼ exðxþ 1Þ þ 6;
f 00ðxÞ ¼ exðxþ 2Þ;
f 000ðxÞ ¼ exðxþ 3Þ:

It can be easily seen that if x 2 ½�1;0� then f 0ðxÞ > 0 and f 00ðxÞ > 0. Function Ef has the form

Ef ðxÞ ¼ exðxþ 3Þ 2x2 þ 8xþ 9
xþ 3

ex � 6
� �

:

Elementary considerations on the function

hðxÞ ¼ 2x2 þ 8xþ 9
xþ 3

ex � 6
cal results for f ðxÞ ¼ ex þ 10x� 6; x0 ¼ 0.

xi f ðxiÞ gðxiÞ gðxiÞ � xi

0 �5 4.545454545454545e�1 4.5e�01
4.440664289515356e�1 �3.0e�04 4.440938528883854e�1 2.7e�05
4.440925265279589e�1 �8.8e�16 4.440925265279590e�1 1.1e�16

cal results for f ðxÞ ¼ xex þ 6xþ 6; x0 ¼ �1.

xi f ðxiÞ gðxiÞ gðxiÞ � xi

�1 �3.6e�1 �9.386867598047596e�1 6.1e�2
�9.388063596878438e�1 �5.2e�8 �9.388063510191005e�1 8.6e�9
�9.388063510535405e�1 0 �9.388063510535405e�1 0

cal results for f ðxÞ ¼ ex þ 10x� 6; x0 ¼ 1.

xi f ðxiÞ gðxiÞ xi � gðxiÞ

1 6.7e+00 3.892471065037231e�1 6.1e�1
4.443161590489098e�1 2.5e�03 4.440811568660437e�1 2.3e�4
4.440925265279666e�1 8.7e�14 4.440925265279586e�1 8.0e�15



Table 4
Numerical results for f ðxÞ ¼ xex þ 6xþ 6; x0 ¼ 0.

i xi f ðxiÞ gðxiÞ xi � gðxiÞ

0 0 6 �1 1
1 �9.373133790648003e�1 8.9e�03 �9.388123833083162e�1 1.4e�03
2 �9.388063510532724e�1 1.6e�12 �9.388063510535415e�1 2.6e�13
3 �9.388063510535405e�1 0 �9.388063510535405e�1 0

Table 5
Numerical results for f ðxÞ ¼ x2 þ xþ ex � 2; x0 ¼ 0.

i xi f ðxiÞ gðxiÞ gðxiÞ � xi

0 0 �1 5.000000000000000e�1 5.0e�01
1 3.812436839992096e�1 �9.3e�3 3.858962983331455e�1 4.6e�03
2 3.841231457070055e�1 �1.4e�8 3.841231530080986e�1 7.3e�09
3 3.841231502186257e�1 0 3.841231502186258e�1 5.5e�17

Table 6
Numerical results for f ðxÞ ¼ x2 þ xþ ex � 2; x0 ¼ 1.

i xi f ðxiÞ gðxiÞ xi � gðxiÞ

0 1 2.7e+00 �3.591409142295228e�1 1.3e+00
1 8.171724311528673e�1 1.7e+00 �5.734363097371054e�2 8.7e�01
2 4.455499951929994e�1 2.0e�01 3.428432514870640e�1 1.0e�01
3 3.841760770231760e�1 1.7e�04 3.840904238727148e�1 8.5e�05
4 3.841231502186540e�1 9.1e�14 3.841231502186082e�1 4.5e�14
5 3.841231502186256e�1 �4.4e�16 3.841231502186259e�1 2.2e�16
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lead to inequality hðxÞ < 0;8x 2 ½�1;0�, i.e. Ef ðxÞ < 0 for x 2 ½�1;0�. We consider g given by

gðxÞ ¼ x� f ðxÞ
f 0ð�1Þ ¼ �

xex þ 6
6

:

We have

g0ðxÞ ¼ � ðxþ 1Þex

6
6 0; 8x 2 ½�1; 0�:

For x0 ¼ �1 one has gð�1Þ ¼ � 6�1
e

6 2 ½�1;0�, so the hypotheses of Theorem 1 are satisfied. The approximations from
Tables 3 and 4 are again in accordance with Theorem 1.
(c) We consider equation
f ðxÞ ¼ x2 þ xþ ex � 2 ¼ 0; x 2 ½0;1�:

Since f ð0Þ ¼ �1; f ð1Þ ¼ e it follows that the above equation has a solution in [0,1]. The derivatives of f are given by

f 0ðxÞ ¼ 2xþ 1þ ex > 0; for x 2 ½0;1�;
f 00ðxÞ ¼ 2þ ex > 0; for x 2 ½0;1�;
f 000ðxÞ ¼ ex:

Function Ef ðxÞ is given by

Ef ðxÞ ¼ 12þ ð11� 2xÞex þ 2e2x > 0 for x 2 ½0;1�:

We consider

gðxÞ ¼ x� f ðxÞ
f 0ð0Þ ¼

1
2
ðx� x2 � ex þ 2Þ

with

g0ðxÞ ¼ 1
2
ð1� 2x� exÞ < 0; x 2 ½0;1�:

For x0 ¼ 0 we have gð0Þ ¼ 1
2 2 ½0;1�. Hypotheses of Theorem 5 are satisfied. The approximations of �x from Tables 5

and 6 are in accordance with the statement of Theorem 5.
The numerical examples show here that the use of jgðxnÞ � xnj offer better error bounds than jf ðxnÞj.
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[14] I. Păvăloiu, Approximation of the root of equations by Aitken–Steffensen-type monotonic sequences, Calcolo. 32 (1995) 69–82.
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