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1. Introduction

The iterative methods play a crucial role in approximating the solutions of nonlinear equations. The methods with super-
linear convergence offer good approximations with a reduced number of steps. In a series of papers [1-11] the authors obtain
different methods or modifications of some known methods, in order to achieve iterative methods with higher convergence
orders.

The Steffensen, Aitken or Aitken-Steffensen methods lead to sequences having at least order 2 of convergence. A natural
approach to generalize such methods can be obtained with the aid of inverse polynomial interpolation (Lagrange, Hermite,
Taylor, etc.), with controlled interpolation nodes [12-17]. One of the advantages of such methods is the fact that the inter-
polation nodes may be controlled such that the methods offer sequences with bilateral approximations (both from above and
from below) of the solutions. This aspect offers the control of the error at each step [14,16].

In this paper we shall extend a Steffensen type method using the Hermite inverse interpolatory polynomial of degree 2
with two nodes. In [13] we have shown that among all the Steffensen-Hermite methods with two nodes of arbitrary orders,
the optimal efficiency index is attained in the case when one node is simple and the other one is double (see [18] for def-
initions of efficiency index); we have also shown there that the convergence order of this method is 3. Here we provide new
convergence conditions, which offer bilateral approximations of the solution; these are very useful for controlling the error
at each iteration step. In Section 2, we shall study the convergence of this method, and in Section 3 we shall indicate a meth-
od of constructing the auxiliary functions used for controlling the interpolations nodes. Some numerical examples will be
shown in Section 4.

Letc,d e R,c < d,f :[c,d] — R,g: [c,d] — [c,d] and consider the following equivalent equations:

fx) =0, (1)
gx) =x. (2)

As usually, the first order divided difference of fat a, b € [c, d] will be denoted by [a, b; f]; if a is double, then [a, a; f] = f'(a). For
the second order divided differences we have
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b,e;f] —[a,b;
abef) = LENZIOBI g p e g

and if a is double, then

Let F = f([c,d]) and assume the following conditions hold:
(A) f € C*([c,d]) and f'(x) # 0 Vx € [c,d].

By A it follows that f : [c,d] — F is invertible so there exists f~! : F — [c, d].

Let g; € [c,d],i=1,2 and b; = f(a;),i = 1,2, i.e. a; = f~'(b:), and denote a; = (f~'(b1))" = 7. Consider now the inverse
interpolatory Hermite polynomial having b; as double node and b, as simple node, i.e. the second degree polynomial H
determined such that

H(b]) =0,
H (b)) - ai, 3)
H(bz) =day.

Using the divided differences on multiple nodes, the resulted Hermite polynomial may be expressed in one of the following
equivalent ways [17]:

H(y) = ar + b1, b2 f1](y = b1) + (b1, bz, by: f~1](v = b1) (v — ba), 4)

H(y) = ay + [by,b1;f'](y — b1) + [b1, by, bas f 1]y — by)? (5)
or

H(y) = @ + [b2, bi: f1)(y = ba) + (b2, b1, bis f1](y — ba)(y — by). (6)
The remainder is given by

F'¥) = H) = [y, b1, b1, by f 1)y = b1)* (v — ba), y€F. (7)

It can be easily seen that the representations given by (4)-(6) verify condition (3).
(B) Assume that Eq. (1) has a solution X € [c,d].

By A it follows that the solution X is unique in [c, d].
One has X = f~1(0), whence, by (4)-(7), one obtains the following representations for x:

X=a; — [b1,by; f by + [b1, b2, bi; f 1 biby — 1, (8)

X=w _[b17b1;f7]]b1+[b17b1>b2;f7]]b§_r 9
or

X =ay — [baby;f'|ba + [b2, by, by f ']baby —, (10)
where

r=10,b1,by,by; f1]bib,. (11)

If in (8), (9) or (10) we neglect the remainder r, one may obtain an approximation for x, denoted by as:

as =a, — [b17b2§f71]b1 + [b17b27b1;f7]]b1b2 (12)
or

as = a; — [by,by;f by + [b17b17b2§f7]]b? (13)
or

a3 = Gy — [by, ba; f7')by + [by, by, by; f1]bby. (14)
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It can be easily seen that

LF-1
b b= (15)
1
LF-1
brbif ) = g (16)
by by bysf1] = — L0 2iS] (17)

la1,ax; f1°f"(ar)

For the divided difference [0, by, by, b,;f~1] we take into account hypothesis A, i.e. f~! € C*(F) and apply the mean value for-
mula. There exists # € intEy such that

1 n
0.6y, by bysf 1) = LU0 (18)
where Ej is the smallest interval containing b, b, and 0.
Since f is invertible it follows that there exists ¢ € intey such that # = f(¢), where e, is the smallest interval containing
a;,a and X.
It can be easily seen that [15,17,19]

_ " 3(["()())2 *f/(X) m(x)
o))" = ~ (19)
(f'(x))°
Relations (15) and (16) lead to the following representation for the third order divided difference
Ly 30"(9) f’ ) " ()
0,by, by, by; . 20
N R (20)

Let x, € [c,d] be an approximation of the solution . If we set in (12)-(14) a; = X, a; = g(x,) and we take into account rela-
tions (15)-(17) then we obtain a new approximation x,,; for x [16,13]:

o f&n) X, Xn, 8(xn)i ff (xn)f (8(Xn)) _

Tt = o g ()i ] Mg ) 0.1, 1)
_ _f(xn) B [men,g(xn)?f]fz(xn) _

Xni1 = X fl(xn) [Xn. (Xn);ﬂzf’(xn) , n 07 1... ’ (22)
_  f(&xn)  [Xns Xn, 8 (Xn): f1f (Xn)f (8 (%n)) _

Xni1 = &(Xn) o8 (%0): 1] X 2060)SF () , n=0,1... (23)

It can be easily seen that (21)-(23) yield in fact a same approximation X,1.
Analogously, if in (12)-(14) we set a; = g(x»), a, = X, we obtain the approximation x,,; in one of the following (equiva-
lent) forms

_ _ fEgn) %0, 8(Xn), &(Xn) f1f (Xn)f (8 (Xn) _
Kot = 80 S ] [Xn, ( )f] g 01 %)
_ f8xn)  [Xn,8(Xn), 8(xn); 1f*(8(xn)) _
Xt =80 ") g ) #2)
Yoy =Xy J ) [n 8(n). 8 S () g (26)

(Xn. 8 (Xn):f] X, 8(%n): [ ((xn))

Obviously, (24)-(26) represent the same approximation of x.
The approximation x,,; given by (21)-(23) obeys

X —Xpi1 = —[0,f (%n).f (Xn), £ (§(Xn)):f 1 (xa)f (&(xn)). (27)
Analogously, for x,,; given by (24)-(26) one obtains:
X — Xnt1 = _[Osf(xn)»f(g(xn))7f(g(xn))§f71]f(xn)f2 (g(xn))~ (28)

In this paper we shall study both the convergence of the sequence (x;),., given by any of relations (21)-(23) and of the se-
quence given by any of relations (24)-(26).

Under some reasonable conditions on f regarding monotonicity and convexity on [c, d], we shall show that de above meth-
ods yield monotone sequences. Moreover, these iterations provide bilateral sequences, approximating the solution both from
above and from below, which lead so a more precise control of the error [13-15].
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2. Study of convergence
For the study of method given by (21)-(23), besides A and B we consider the following hypotheses:

(C) Egs. (1) and (2) are equivalent;
(D) function g is continuous and decreasing on [c, dJ;
(E) function E;(x) = 3(f"(x))* — f (x)f" (x) < 0,Vx € [c,d].

In the following we shall study the 4 situations when f does not change the monotony and convexity on [c, d].

Theorem 1. If functions f, g and X, € [c,d] obey A-E and, moreover,

i1. f/(x) > 0,Vx € [c,d];
iii. f"(x) = 0,Vx € [c,d];
iii] g(XQ) [ }

then the following properties hold:

Ji- Iff(x0) < O then sequence (x,),., given by (21)-(23) is increasing and bounded, while the sequence (g(x,)),.-, is decreasing
and bounded;
Jii- If f(x0) > O then sequence (x,),., is decreasing and bounded, while (g(x,)),, is increasing and bounded;
jij;. limx, = limg(x,) = X;
Vi X = Xn] < 18(Xnt1) — Xnn|,n=0,1,...

Proof. Let x, € [c,d] be an approximation for X such that f(x,) < 0 and g(x,) € [c,d]. By i, it follows that x, < X, while by (D)
g(xn) > X, i.e., f(g(xy)) > 0. From iy, ii;, and (21) it can be easily seen that x,,; > x, and g(x,1) < g(x»). By (18)-(20), (27) it
follows that exists &, €]x,,g(xn)[ such that

_ Ef Cn 2

X—Xp1 = — . 29

" TS ) — A (%n)f (8(Xn)) (29)

The above equality, together with (E) and i; imply x,,; < X, which in turn attracts g(x,.1) > X. The property j, is proved. Let
Xn € [c,d] such that f(x,) > 0 and g(x,) € [c,d]. Obviously, x, > X and g(x,) < &, i.e. f(g(x)) < 0. By iy,ii; and (22) it follows
Xny1 < Xn. From (29) we get X < X,,1, i.e. g(X,.1) < X. These prove jj,. For proving jjj;, let lim,_...x, = ¢. Passing to limit
n — oo in (21) and taking into account the continuity of f and g leads to f(¢) = 0. Since the solution X is unique on [c,d], it
follows ¢ = X. Relation lim, .. g(x,) = X is obvious, as well as property iv;. O

Theorem 2. If x, € [c,d] and functions f, g verify A-E and, moreover,

i,. f/(x) <0,Vx € [c,d];
ii,. f7(x) = 0,Vx € [c,d];
iii,. g(x0) € [c,d],

then

J2- If f(x0) > O, then the sequence (xn),., generated by any of the relations (21)-(23), is increasing and bounded, while
sequence (g(Xn)), is decreasing and bounded;
Iiz- If f(x0) <O, then the sequence (x,),., generated by any of the relations (21)-(23) is decreasing and bounded, while
sequence (g(Xn)),, is increasing and bounded;
jii,. Properties jjj; and jv, of Theorem 1 hold true.

Proof. Let x, € [c,d] such that f(x,) > 0 and g(x,) € [c,d]. By i, it follows x, < X i.e. g(x,) > X and f(g(x»)) < 0. If we take into
account i, ii, and (22), we get x,,,1 > X,. Hypotheses (E) and i;, together with (29) ensure relation x,,; < X, i.e. g(Xp,1) > X.
Since x,.1 > X, it follows g(xn.1) < g(xs). Property j, is proved. Let x, € [c,d] such that f(x,;) < 0 and g(x,) € [c, d]. Obviously,
from i, it follows x,, > X and from (D) it follows g(x,) < X, i.e. f(g(xn)) > 0. By i, ii, and (21) we get x,.1 < X,. By (29), taking
into account (E) and i, it follows x,,1 > X, i.e. g(x,.1) < X. Property jj, is proved. Property jjj, is obvious. O

In the following, instead of Eq. (1) we shall consider equation
h(x) =0, (30)
where h : [c,d] — R, h(x) = —f(x).
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We notice that if function Ef(x) verifies (E), then function E,(x) = 3(h"(x))* — I (x)h” (x) = E(x) verifies hypothesis (E).
Taking into account the above relations, the following assertions are consequences of Theorem 1 respectively
Theorem 2:

Corollary 3. If xq € [c,d] and functions f, g verify hypotheses A-E and, moreover,

c. f/(x) <0,Vx € [c,d];
cc;. f(x) < 0,Vx € [c,d];
cccy. g(xo) € [c,d],

then the following properties hold:

k1. If f(xo) > O, then sequence (x), -, generated by (21)-(23) is increasing and bounded, while sequence (g(xy)), is decreas-
ing and bounded;

KK;. If f(xo) < O, then sequence (x,),., generated by (21)-(23) is decreasing and bounded, while sequence (g(x,)), is increas-
ing and bounded;

KKkKk;. The properties jjj,; and jv, of Theorem 1 hold true.
Proof. For the proof of this theorem we notice that if f verifies hypotheses of this Corollary, then function h verifies the
assumptions of Theorem 1, so properties k;-kkk; are obvious. O
Corollary 4. If x, € [c,d] and functions f, g satisfy assumptions A-E and, moreover,
c,. f'(x) > 0,Vx € [c,d];
cc,. f"(x) < 0,Vx € [c,d];

ccc,. g(Xo) € [c,d],

then the following are true:

ka. Iff(xo) < O then sequence (x,),. o generated by (21)-(23) is increasing and bounded while sequence (g(X,)), is decreasing
and bounded;
Kk;. If f(xo) > O then sequence (x,),., generated by (21)-(23) is decreasing and bounded, while sequence (g(X,)), iS increas-
ing and bounded;

KKKk,. The properties jjj, and jv, of Theorem 1 hold true.

Proof. The proof is analogous to the proof of Corollary 3. O

In the following we shall study the convergence of the sequence (x,),., generated by (24)-(26). Instead of hypothesis (E)
we shall assume further hypothesis

(E) Ef(x) = 0, Vxelcd).

Theorem 5. If Xy € [c,d] and functions f, g verify assumptions A-D, E' and moreover

is. f'(x) > 0,Vx € [c,d];
iis. f"(x) > 0,Vx € [c,d];
iiis. g(xo) € [c,d],

then the following are true:

Js- If f(x0) < O then sequence (x,),., generated by any of (24)-(26) is increasing and bounded while sequence (g(Xn), is
decreasing and bounded;
jis. Properties jjj,; and jv, of Theorem 1 hold true.
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Proof. Let x, € [c,d] such that f(x,) < 0 and g(x,) € [c,d]. Obviously, by is it follows x, < x and by 2) we get g(x,) > X, i.e.
f(g(xn)) > 0. Properties i5‘ iis and (26) imply x,.1 > X,. Properties (18)-(20), (28) attract the existence of ¢, €]x,,g(x,)[ such that
. Sn) 2
Xni1 = —— == f(xa)f*(&(xn)). (31)
" 6(f <fn>>5 '
This equality, together with (E'),is and inequality f(x;) < 0 lead to X > x,,; and g(x,,1) > X. From x,,,; > x, and (D) we get
g(xny1) < g(xn). Property js is proved. Property jjs is obvious if we take into account the proof of Theorem 1. O

Theorem 6. If x, < [c,d] and functions f, g obey A-D, E' and, moreover,

is. f'(x) <0,Vx € [c,d];
iis. f7(x) = 0,Vx € [c,d];
iiis. g(x0) € [c,d],

then the following are true:

Js- If f(x0) < O then sequence (x,),., generated by (24)-(26) is decreasing and bounded, while sequence (g(x,)), is increas-
ing and bounded;
jis- Properties jjj, and jv, of Theorem 1 hold true.

Proof. The proof is analogous to the proof of Theorem 5. O

If instead of Eq. (1) we consider Eq. (30) then the following consequences of Theorem 5 and respectively Theorem 6 are
true:

Corollary 7. If xo < [c,d] and functions f, g verify A-D, E' and
c;. f'(x) <0,Vx € [c,d];
cc;. f"(x) < 0,Vx € [c,d];
cccy. g(xo) € [c,d],
then
K;. If f(xo) > O then sequence (x,),., generated by (24)-(26) is increasing and bounded, while (g(xo)),., is decreasing and

bounded;
kk;. The properties jjj, and jv, of Theorem 1 are true.

Corollary 8. If xo € [c,d] and functions f, g verify A-D, E' and
cs. f'(x) > 0,Vx € [c,d];
ccs. f'(x) < 0,Vx € [c,d];
cccs. g(Xo) € [c,d],
then
Ks. Iff(xo) > O then sequence (X,),, generated by (24)-(26) is decreasing and bounded while sequence (g(X,)),- , is increasing

and bounded;
Kkkg. Properties jjj, and jv, of Theorem 1 are true.

The convergence order of the sequences studied above is given in the following results.
Theorem 9. Under the hypotheses of Theorem 1 if, moreover,
is. The function g is derivable at X, and the divided differences [, X; g] are bounded on [c, d),
then the q-convergence order of the sequence (x,),., generated by any of the relations (21)-(23) is equal to 3.

Proof. Taking into account equalities f(X) = 0,f(g(X)) = 0, relation (29) may be written in the form

. OB (fn) —FR)\fE(xn) —f(8(RX) g(xa) — &(X) _
"”‘"*1‘60’(@1))'( Xn — X ) o —g® | xx

)
)



Now, by hypotheses of Theorem 1 there exist vy, i, €]Xs,g(x,)[ such that

By A, i; and iy it follows the existence of a constant C > 0 such that
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X —Xny1=— Ef(gn)

6(f(¢a))

> v 3
|X_Xn+1| SC-‘X—XH

)

which shows the g-convergence order 3 of the sequence. O

(1)) f (8 (V) - X RG] (xn — X).
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Theorem 10. Under the hypotheses of Theorem 5 if, moreover, hypothesis iy of Theorem 9 hold, then the convergence order of the
sequence generated by any of relations (24)-(26) is 3.

Proof. The proof is obtained in a similar manner as in Theorem 9.

3. Choosing the auxiliary function

1.

We notice that in all the results of the previous section, the continuity and monotony of g are essential (hypothesis (D)
requires that g is continuous and decreasing).
In the following we shall point out a simple modality of obtaining such a function in accordance with the monotony and
convexity of f.

If function f verifies: f'(x) > 0 and f”(x) > 0,Vx € [c,d], then it can be easily seen that g can be chosen in the following

way:
_ ., f®
8 =X"play
More generally, if /; € [0,f'(a)] then we may take
_, f®
g(x)=x— I

It can be easily seen that g’(x) < 0, i.e., g is decreasing.

. When f'(x) > 0,f"(x) < 0, Vx € [c,d], we may take

_,
g(X) =X 7f,(b) )
more generally, if 7, €]0,f'(b)[ then we may take
_, f®
g(x)=x— T

and hypothesis (D) is fulfilled.

L Iff/(x) < 0,f"(x) = 0, Vx € [c,d] one may take

_ ., f®

8 =X
or, more generally, for 23 € [f'(b),0) one may take

_ ., f®

g(x)=x— T

. Finally, if f'(x) < 0,f"(x) < 0, Vx € [c,d] then one may take

L Iw
N

or more generally, if 14 € [f’(a),0) one may take
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4. Numerical examples

(a)

Let f(x) = e* + 10x — 6. We notice that equation f(x) = 0 has a solution X €]0, 1[,f(0) = —5,f(1) = e + 4. This solution is
unique since f'(x) = e* 4+ 10 > 0,Vx € [0, 1]. The second and third derivatives of f are f”(x) = f”(x) = e*, while E¢(x) is
given by Ef(x) = 2e*(e* — 5), such that for x € [0,1] we have E;(x) < 0. Hypotheses of Theorem 1 are considered. Let
g be given by

., f®
gx)=x F0)

—e*+Xx+6
gX) =——7—

We take xo = 0 and we have g(0) = 2 € [0, 1]. If we consider xo, = 1 then g(1) = Z5¢ € [0, 1]. The numerical results in

Tables 1 and 2 are in accordance with the properties of the sequences (x;) and (g(x;)) proved in Theorem 1. In Tables
1-6 we have written only the first two digits for the mantissa of f(x;) and g(x;) — x;, since only the magnitude of these
quantities is important.

Consider the equation

f(x)=xe"+6x+6=0

for x € [-1,0]. Since f(0) = 6,f(—1) = —1 it follows that the above equation has a solution X € [—1,0]. The derivatives
of f are

fx)=e(x+1)+6,

frx) =e*(x+2),

f'(x) =e(x+3).

It can be easily seen that if x € [-1,0] then f'(x) > 0 and f”(x) > 0. Function E; has the form

2x2+8x+9e,<76>.

Ef(x) :e"(x+3)< 3

Elementary considerations on the function

2
hx) = 28X 19 :f’;* Yo 6

Table 1
Numerical results for f(x) = e* + 10x — 6,xo = 0.
i Xi f(xi) g(xi) g(Xi) — Xi
0 0 -5 4.545454545454545e—1 4.5e—01
1 4.440664289515356e—1 —3.0e—04 4.440938528883854e—1 2.7e—05
2 4.440925265279589e—1 —8.8e—16 4.440925265279590e—1 1.1e-16
Table 2
Numerical results for f(x) = e + 10x — 6,x = 1.
i Xi f(x;) g(x;) Xi — &(x;)
0 1 6.7e+00 3.892471065037231e—1 6.1e—1
1 4.443161590489098e—1 2.5e-03 4.440811568660437e—1 2.3e-4
2 4.440925265279666e—1 8.7e—14 4.440925265279586e—1 8.0e—15
Table 3
Numerical results for f(x) = xe* + 6x + 6,xo = —1.
Xi f(xi) g(xi) g(xi) =X
0 -1 —3.6e—1 —9.386867598047596e—1 6.1e—2
1 —9.388063596878438e—1 —5.2e-8 —9.388063510191005e—1 8.6e—9
2 —9.388063510535405e—1 0 —9.388063510535405e—1 0
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Table 4
Numerical results for f(x) = xe* + 6x + 6,xp = 0.
Xi f(xi) g(xi) Xi — &(X;)
0 0 6 -1 1
1 —9.373133790648003e—1 8.9e—03 —9.388123833083162e—1 1.4e-03
2 —9.388063510532724e—1 1.6e—12 —9.388063510535415e—1 2.6e—13
3 —9.388063510535405e—1 0 —9.388063510535405e—1 0
Table 5
Numerical results for f(x) = x> +x +e* —2,xy = 0.
Xi f(xi) 8(x;) g(Xi) —Xi
0 0 =l 5.000000000000000e—1 5.0e—01
1 3.812436839992096e—1 -9.3e-3 3.858962983331455¢e—1 4.6e—03
2 3.841231457070055e—1 —1.4e-8 3.841231530080986e—1 7.3e—09
3 3.841231502186257e—1 0 3.841231502186258e—1 5.5e—17
Table 6
Numerical results for f(x) = x* +x +e* —2,xy = 1.
Xi f(xi) g(x;) Xi — 8(X;)
0 1 2.7e+00 —3.591409142295228e—1 1.3e+00
1 8.171724311528673e—1 1.7e+00 —5.734363097371054e—2 8.7e—01
2 4.455499951929994e—1 2.0e—01 3.428432514870640e—1 1.0e—01
3 3.841760770231760e—1 1.7e—04 3.840904238727148e—1 8.5e—05
4 3.841231502186540e—1 9.1e-14 3.841231502186082e—1 4.5e—14
5 3.841231502186256e—1 —4.4e-16 3.841231502186259e—1 2.2e-16
lead to inequality h(x) < 0,Vx € [-1,0], i.e. Ef(x) < O for x € [-1,0]. We consider g given by
(X) = x fx)  xe*+6
Y TTES R
We have
X+ 1)
gx) = f% <0, Vvxel[-1,0].
_1 . . .
For xo = —1 one has g(-1) = —% € [-1,0], so the hypotheses of Theorem 1 are satisfied. The approximations from
Tables 3 and 4 are again in accordance with Theorem 1.
(c) We consider equation

The numerical examples show here that the use of |g(x,) — X,| offer better error bounds than |f(x,)|.

fX)=x*+x+e&-2=0, xe[0,1].

Since f(0) = —1,f(1) = e it follows that the above equation has a solution in [0,1]. The derivatives of f are given by

f(x)=2x+1+¢ >0,

f'x)=2+¢e>0, forxe[0,1],

F(x) = €.

Function E¢(x) is given by

Er(x) = 12+ (11 - 2x)e* + 2e* >0 forx € [0,1].

We consider

80 =X~ = 5(x

with

—x2—e*+2)

g'x) :%(1 -2x-¢)<0, xe][0,1].

for x € [0,1],

For xo = 0 we have g(0) =1 € [0, 1]. Hypotheses of Theorem 5 are satisfied. The approximations of x from Tables 5

and 6 are in accordance with the statement of Theorem 5.
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