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Abstract We study the solving of nonlinear equations by an iterative method
of Aitken type, which has the interpolation nodes controlled by the New-
ton method. We obtain a local convergence result which shows that the
q-convergence order of this method is 6 and its efficiency index is 5

√
6, which is

higher than the efficiency index of the Aitken or Newton methods. Monotone
sequences are obtained for initial approximations farther from the solution,
if they satisfy the Fourier condition and the nonlinear mapping satisfies
monotony and convexity assumptions on the domain.

Keywords Nonlinear equations · Aitken method · Newton method ·
Monotone convergence

1 Introduction

In this note we study an Aitken type method, for which the interpolation nodes
are given by two iterations of Newton type. We show that this method has the
q-convergence order 6 and it requires 5 function evaluations at each step. This
implies that the efficiency index of this method is 5

√
6, which is greater than

√
2

(the efficiency index of the Newton and of the Aitken method) [10, 14, 20].
Consider the equation

f (x) = 0 (1)
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where f : [a, b ] → R, a < b and assume

α) this equation has a solution x∗ ∈]a, b [.
We consider two more equations

x − g1(x) = 0

x − g2(x) = 0 (2)

g1, g2 : [a, b ] → [a, b ], and we assume they are equivalent to (1).
The Aitken method consists in constructing the sequence (xn)n≥0 given by

[1–3, 6–8, 10–19],

xn+1 = g1(xn) − f (g1(xn))

[g1(xn), g2(xn); f ] , n = 0, 1, ..., x0 ∈ [a, b ], (3)

where [x, y; f ] stands for the first order divided difference of f at x and y.
We suppose that f is derivable on [a, b ] and we consider the function

g1(x) = x − f (x)

f ′(x)
. (4)

Denoting

g2(x) = g1(g1(x)),

we are lead to the following Aitken-type iterative method

yn = xn − f (xn)

f ′(xn)
,

zn = yn − f (yn)

f ′(yn)
,

xn+1 = zn − f (zn)

[yn, zn; f ] , n = 0, 1, ..., x0 ∈ [a, b ], (5)

which we call the Aitken–Newton method.
In Section 2 we provide a local convergence result for this method, and we

show a similar result which holds for the Newton method: if f maintains its
monotony and convexity on a larger domain, and the initial approximation
obeys the Fourier condition, then the iterates converge monotonically to the
solution. These properties, together with the fact that the efficiency index of
this method is shown that is higher than the efficiency index of the Newton or
Aitken methods, justify the study of this method.

2 Convergence of the method

We obtain the following local convergence result.
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Theorem 1 Assume α) and

β) there exists an open interval I, x∗ ∈ I ⊆]a, b [ such that f is two times
dif ferentiable on I, with f ′′ continuous at x∗.

Then there exists an interval J ⊆ I such that for any initial approximation
x0 ∈ J, the iterations (5) are well def ined, remain in J and converge to x∗ with
q-order at least 6.

Proof The first and second relations in (5) imply the existence of θn and ηn in
the interior of the intervals determined by xn and x∗, resp. yn and x∗ such that

x∗ − yn = − f ′′(θn)

2 f ′(xn)
(x∗ − xn)

2, n = 0, 1, ... (6)

x∗ − zn = − f ′′(ηn)

2 f ′(yn)
(x∗ − yn)

2, n = 0, 1, ... (7)

The third relation in (5) and the Newton identity imply that

x∗ − xn+1 = −[x∗, yn, zn; f ]
[yn, zn; f ] (x∗ − zn)(x∗ − yn), n = 0, 1, ... (8)

Relations (6)–(8) lead to

x∗ − xn+1 = −[x∗, yn, zn; f ] f ′′(ηn) · ( f ′′(θn))
3

16[yn, zn; f ] f ′(yn)( f ′(xn))3
(x∗ − xn)

6, n = 0, 1, ..., (9)

which shows the assertion, provided that x0 is sufficiently close to x∗. 	


Under supplementary conditions on f we obtain the following result.

Theorem 2 If f and x0 verify α), and

β ′) f is two times dif ferentiable on [a, b ], with f ′′ continuous at x∗;
γ ) x0 ∈ [a, b ] verif ies the Fourier condition: f (x0) f ′′(x0) > 0 (see [10]),

and, moreover,

i1. f ′(x) > 0, ∀x ∈ [a, b ];
ii1. f ′′(x) ≥ 0, ∀x ∈ [a, b ],
then the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by (5), remain in [a, b ]
and obey

j1. xn > yn > zn > xn+1 > x∗, n = 0, 1, ...;
jj1. lim xn = lim yn = lim zn = x∗.

Proof By α) and i1 it follows that x∗ is the unique solution of (1). Let xn ∈]a, b [
be an approximation which verifies the relation f (xn) f ′′(xn) > 0. Then by ii1 it
follows that f (xn) > 0, which, together with i1 lead to xn > x∗.

From i1, ii1 and relation (6) we have x∗ − yn ≤ 0, i.e. yn ≥ x∗. Analogously,
from (7) and (8) it follows zn ≥ x∗ and xn+1 ≥ x∗.
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The first relation in (5) and f (xn) > 0, f ′(xn) > 0 imply that yn < xn.

Analogously, the second relation in (5) leads to zn < yn, while the third
relation in (5) to xn+1 < zn. Conclusion j1 is therefore proved. Moreover, it
is clear that the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 remain
in the interval [x∗, x0] ⊂ [a, b ]. By j1 it follows that these three sequences are
convergent.

Let lim xn = �. Relation j1 implies that lim yn = lim zn = �. The first relation
in (5) attracts that � = � − f (�)

f ′(�) , so f (�) = 0, i.e., � = x∗. 	


The following immediate consequence holds.

Corollary 3 If f and x0 ∈ [a, b ] verify α), β ′), γ ) and, moreover

i2. f ′(x) < 0, ∀x ∈ [a, b ];
ii2. f ′′(x) ≤ 0, ∀x ∈ [a, b ],
then the elements of the sequences (xn)n≥0, (yn)n≥0, and (zn)n≥0 generated by (5)
remain in the interval [a, b ] and satisfy the conclusions j1 and jj1 of Theorem 2.

It is easy to see that if instead of (1) we consider

− f (x) = 0 (10)

then function h : [a, b ] → R given by relation

h(x) = − f (x)

verifies hypothesis of Theorem 2.

Theorem 4 If f and x0 ∈ [a, b ] verify α), β ′), γ ) and, moreover,

i3. f ′(x) > 0, ∀x ∈ [a, b ];
ii3. f ′′(x) ≤ 0, ∀x ∈ [a, b ],
then the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by (5)
remain in [a, b ] and, moreover, obey

j3. xn < yn < zn < xn+1 < x∗, n = 0, 1, ..., ;
jj3. lim xn = lim yn = lim zn = x∗.

The proof of this result is similar to the proof of Theorem 2.
If we replace (1) by (10) then we obtain:

Corollary 5 If f and x0 ∈ [a, b ] verify hypothesis α), β ′), γ ) and, moreover,

in. f ′(x) < 0, ∀x ∈ [a, b ];
iin. f ′′(x) ≥ 0, ∀x ∈ [a, b ],
then the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by (5)
remain in [a, b ] and satisfy the statements j3 and jj3 of Theorem 4.
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Remark 6 Relations (9) show us that the Aitken–Newton method has the
q-convergence order at least 6 (it is exactly 6 if f ′′ (x∗) �= 0, see [9]). In order
to obtain xn+1 from xn in (5) we need to perform the following function
evaluations: f (xn), f ′(xn), f (yn), f ′(yn) and f (zn), i.e., 5 function evaluations.
This shows that the efficiency index of this method is 5

√
6 which is greater than

of Aitken or Newton method.

Remark 7 Under additional information on the bounds of the size of deriva-
tives, one can obtain obtain some a posteriori error estimations of the error:

∣
∣x∗ − xn+1

∣
∣ ≤ M

2m
|xn+1 − yn| |xn+1 − zn| , n = 0, 1, ... (11)

where

m ≤ min
x∈[a,b ]

∣
∣ f ′(x)

∣
∣ , M ≥ max

x∈[a,b ]
∣
∣ f ′′(x)

∣
∣ .

In order to prove them, we consider the Newton identity,

f (xn+1) = f (yn) + [yn, zn; f ](xn+1 − yn) +
+ [xn+1, yn, zn; f ](xn+1 − yn)(xn+1 − zn), n = 0, 1, ...

whence, taking into acount (5), we get

f (xn+1) − f (x∗) = [xn+1, yn, zn; f ](xn+1 − yn)(xn+1 − zn), n = 0, 1, ...,

or

xn+1 − x∗ = [xn+1, yn, zn; f ]
[x∗, xn+1; f ] (xn+1 − yn)(xn+1 − zn), n = 0, 1, ...

The mean value formulas for divided differences lead to (11).
These estimations can be applied in connection to any of the results proved

above.

3 Numerical examples

Example 8 Consider the equation

f (x) = ex + sin x − 2, x ∈ [0, 1].
The derivatives of f are given by

f ′(x) = ex + cos x > 0, x ∈ [0, 1],
f ′′(x) = ex − sin x.

Some elementary considerations on f ′′ show that f ′′(x) > 0 , x ∈ [0, 1]. Since
f is continuous, f ′(x) > 0, x ∈ [0, 1] and f (0) = −1, f (1) = e + sin 1 − 2 > 0,

it follows that f has a unique solution on [0, 1].
Taking x0 = 1, the hypotheses of Theorem 2 are satisfied.
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Table 1 Numerical results when solving ex + sin x − 2 = 0

n xn yn zn f (xn)

0 1.000000000000000e+0 5.213403278939761e−1 4.498799895489901e−1 1.5e+0
1 4.486920253023863e−1 4.486719164440748e−1 4.486719163512726e−1 4.9e−5
2 4.486719163512727e−1 0

In Table 1 we present the results obtained in double precision using
MATLAB.

One can easily verify that min
x∈[0,1]

∣
∣ f ′(x)

∣
∣ = 2 and max

x∈[0,1]
∣
∣ f ′′(x)

∣
∣ ≤ e.

Taking into account (11) we get
∣
∣x∗ − x2

∣
∣ ≤ e

4
|x2 − y1| · |x2 − z1| .

The quantity in the right hand side is majorized by 7.0e−27, which, together
with the fact that f (x2) = 0, shows that in this particular case, x∗ can be
computed with accuracy higher than the machine epsilon.

Example 9

f (x) = ln(x2 + x + 2) − x + 1 = 0, x ∈ [4, 5].
We have

f ′(x) = −x2 + x − 1

x2 + x + 2
< 0, for x ∈ [4, 5];

f ′′(x) = −2x2 − 2x + 1

(x2 + x + 2)2
< 0, for x ∈ [4, 5];

f (4) = ln 22 − 3 > 0 and f (5) = ln 32 − 4 < 0.

We take x0 = 5, so hypotheses of Corollary 3 are verified. The obtained
results are presented in Table 2.

In this case we have min
x∈[4,5]

∣
∣ f ′(x)

∣
∣ > 1

3 and max
x∈[4,5]

∣
∣ f ′′(x)

∣
∣ ≤ 1

8 , whence, by (11)

we get

∣
∣x∗ − x2

∣
∣ ≤ 3

16
|x2 − y1| · |x2 − z1| .

The quantity in the right hand side is majorized by 1.4e−31, which, together
with the fact that f (x2) = 0 shows that in this example too x∗ is computed with
accuracy higher than the machine epsilon.

Table 2 Numerical results when solving ln(x2 + x + 2) − x + 1 = 0

n xn yn zn f (xn)

0 5.000000000000000e+0 4.185883280456726e+0 4.152656878948953e+0 −5.3e−1
1 4.152590868900850e+0 4.152590736757159e+0 4.152590736757158e+0 −7.9e−8
2 4.152590736757158e+0 0
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We make the following comments regarding the convergence order of the
obtained sequences. Since they are monotonic in these two examples, the
quotient convergence factors [9, ch. 9] can be determined by (9), taking into
account the mean value formulas for divided differences, as

Q6 {xk} = lim
k→∞

|xk+1 − x∗|
|xk − x∗|6 =

(

f ′′ (x∗)
)5

32 ( f ′ (x∗))5 . (12)

Therefore, since in both examples f ′′ (x∗) �= 0, the q-convergence order is
exactly 6. However, the above quantity requires the knowledge of the solution
x∗. In [4] and [5], the asymptotical constant Q6 {xk} was approximated by some
quantities computable at each step:

|xk+1 − xk|
|xk − xk−1|6

, k = 1, 2, ... (13)

In Example 8, formula (12) (with x∗ considered as x2) yields the value 6.3e−4,
while formula (13) for k = 1 yields 7.1e−4, i.e., two close quantities. These
values are also close in Example 9, where we obtain 1.0e−6, respectively
3.5e−7.

Some other formulas to determine the convergence order were considered
in [21]:

p ≈ ln |(xk+1 − x∗) / (xk − x∗)|
ln |(xk − x∗) / (xk−1 − x∗)| , k = 1, 2, ...

subsequently approximated in [5] by

p ≈ ln |(xk+1 − xk) / (xk − xk−1)|
ln |(xk − xk−1) / (xk−1 − xk−2)| , k = 2, 3, ...

but since in the presented examples the solution was approximated in only
three steps (the convergence order is high), we cannot use these formulas.
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