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Abstract. The present work deals with the numerical long-time integration
of damped Hamiltonian systems. The method that we analyze combines a spe-
cific Strang splitting, that separates linear dissipative effects from conservative
ones, with an energy-preserving averaged vector field (AVF) integrator for the
Hamiltonian subproblem. This construction faithfully reproduces the energy-
dissipation structure of the continuous model, its equilibrium points and its

natural Lyapunov function. As a consequence of these structural similarities,
both the convergence to equilibrium and, more interestingly, the energy de-
cay rate of the continuous dynamical system are recovered at a discrete level.
The possibility of replacing the implicit AVF integrator by an explicit Störmer-
Verlet one is also discussed, while numerical experiments illustrate and support
the theoretical findings.

1. Introduction. Optimization has played an important role in the development of
modern science ever since Fermat and Maupertuis have laid its foundations. Nowa-
days, this fundamental paradigm plays a central role in some of the most challenging
fields of applied mathematics such as machine learning or image processing, with
the difference that emphasis lays on an algorithmic perspective.

In these fields, second order dissipative dynamical systems have become quite
fashionable during the last couple of decades, as part of a revival of Polyak’s [34]
seminal idea that optimization can be connected to dissipative systems by consid-
ering a damped mechanical system whose potential energy is precisely the function
to be minimized and taking advantage of the system’s natural tendency to converge
to equilibrium, i. e., to minimize the potential energy. The most telling example of
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such a mechanical system is that of a heavy ball sliding, under the action of gravity,
along a profile defined by the function to be minimized. This is the celebrated heavy
ball with friction dynamical system [2].

Independently of their relevance to optimization, dissipative dynamical systems
governed by second order evolution equations have been studied in connection to
various applications (see for example [18], [22] or [42]), especially related to damped
wave or beam equations. In the more challenging, nonconvex case, the asymptotic
behavior of such dissipative systems has been analyzed by Haraux and Jendoubi
[20], [21], who pioneered the use of the  Lojasiewicz inequality as a main ingredient
for obtaining energy decay rates in the long time asymptotic regime. Their original
results have been complemented not long ago by Bégout, Bolte and Jendoubi [4]
who were able to derive, in a general case, convergence rates for trajectories based
on a quasi-gradient system approach (cf. also [23]).

In this context, the present contribution is concerned with the asymptotic analy-
sis of a structure-preserving scheme based on reversible-irreversible splitting, which
faithfully reproduces the long-time decay to equilibrium of the continuous system.

The asymptotic behavior of splitting methods has been investigated recently by
Dujardin and Lafitte [10]. However, we deviate from their approach in the sense
that we do not consider the asymptotic error, i.e., the difference between exact and
numerical asymptotic states, as defined in [10], rather, we restrict our attention to
an integrator whose asymptotic states inherently coincide with those of the con-
tinuous system. This, together with correctly reproducing the energy-structure of
the problem and its asymptotic energy decay rate are the main objectives of this
work and they relate to one of the fundamental questions of geometric numerical
integration: “How can numerical methods be constructed that respect the geometry
of the problem at hand?” (see [15]).

When choosing the numerical scheme, we take a (Strang) splitting approach,
which allows semiflows (subproblems) to be chosen in a natural way such that lin-
ear dissipative effects are completely uncoupled from nonlinear conservative ones.
The ensuing discrete dynamical system preserves both the Lyapunov function and
the equilibrium points of its continuous counterpart. This approach is not new
as splitting methods have been used to exactly preserve the conformal symplectic
nature of the system (see [30, 31]). In most cases, the nonlinear conservative sub-
problem, a Hamiltonian evolution system, cannot be solved explicitly, but a variety
of effective geometric numerical integrators are available. In [5] both implicit mid-
point methods and Störmer-Verlet methods are shown to lead to second order full
discretizations that preserve dissipation of symplecticity. Under sufficient smallness
assumptions on the step size as well as the damping coefficient, previous work of
Modin and Söderlind [32] had used backward error analysis to show that energy
dissipation is correct up to an exponentially small error, while relative equilibria
are nearly preserved. Very recently, the same approximation ideas have been inves-
tigated in the more general setting of dissipative systems for which an underlying
thermodynamic (GENERIC) structure exists by Shang and Öttinger [38]. Their
findings highlight, along with accuracy, the excellent structural properties of the
approach.

In this work, among the existing Hamiltonian integrators, we choose the energy-
conserving averaged vector field (AVF) method of Quispel and McLaren [36]. This
may not seems to be the most natural choice due to the implicit character of AVF,
but exact energy conservation plays a central role in our asymptotic analysis. This
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choice has also been taken into account in [38] where Verlet splitting integrators are
juxtaposed to a classical Runge-Kutta method and also to an AVF-based method.

From an optimization perspective, the AVF idea has been analyzed recently
by Ehrhardt et. al. [11] (see also [17]) as one of the possible discrete gradient
geometric integrators that approximate a continuous gradient flow inheriting its
dissipation property and convergence to equilibrium. There is also a more general
increased interest of the optimization community in geometric integrators and the
connections between their field and the numerical analysis of evolution equations, as
shown by the large number of diverse recent contributions like [9, 14, 24, 29, 39, 43].
We must point out however, that the present analysis concentrates on nonconvex
energies while all the above references are bound to the convex case and not directly
comparable. For recent contributions dealing with both continuous and discrete
dynamics in the nonconvex stetting, we refer to [6], [26] or [1].

The paper is organized as follows. In Section 2, we provide a detailed analysis of
the continuous problem. While not new, these results have been included since they
provide a blueprint for the constructions in Sections 3 and 4 where the properties of
the continuous system are replicated at a discrete level. As a first step towards a full
discretization, in Section 3, a conservative-dissipative Strang splitting that correctly
reproduces the energy-dissipation structure of the problem is proposed, while in
Section 4 the Hamiltonian subproblem is discretized giving rise to a composite
geometric integrator. The analysis of this AFV splitting integrator, still carried out
in Section 4, proves that for the generated discrete dynamical system convergence
to equilibrium takes place with the same energy decay rate as for its continuous
counterpart. An explicit alternative to the AVF integrator is discussed in Section 5.
Finally, numerical experiments supporting all these results are presented in Section
6.

2. Analysis of the continuous model. We consider the second-order gradient
system ü + 2u̇ = −∇E (u) or, equivalently,

{
u̇ = v,
v̇ = −2v −∇E (u) .

(1)

which can be understood as describing the damped oscillations of a particle under
the action of a conservative force derived form the potential E. The choice of the
damping coefficient is obviously arbitrary but will help simplifying later computa-
tions without changing the nature of the results. Owing to its mechanical structure,
arguably the most important feature of the system is its energy balance equation

d

dt

(
1

2
‖v(t)‖2 + E (u(t))

)
= −2 ‖v(t)‖2 , (2)

according to which the total (kinetic plus potential) energy (Hamiltonian) of the
system,

H(u(t), v(t)) =
1

2
‖v(t)‖2 + E (u(t)) (3)

is decreasing along solutions. Frictional forces will diminish the energy of the sys-
tem, and hence the amplitude of its oscillations, until eventually the system ap-
proaches a state of mechanical equilibrium (u∗, v∗) at which both frictional and
potential forces vanish, that is,

v∗ = 0 and ∇E(u∗) = 0.
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Given that the potential energy E has C2 regularity, a standard stability analysis for
the above equilibria shows that pairs (u∗

max, 0) where u∗
max is a maximum of E are

unstable, while pairs (u∗
min, 0) are exponentially stable when u∗

min is a minimizer
of the potential energy. Thus, from an optimization perspective, the dynamical
system (1) and its discrete counterparts are expected to provide a viable approach
for finding local minima of an objective function.

Dissipation of energy assures the existence of global in time solutions to (1) under
very natural assumptions concerning the regularity and coercivity, i.e., E(u) → ∞
as ‖u‖ → ∞, of the potential E. However, the energy balance equation alone
does not provide sufficient information in order to fully characterize the rate of
convergence towards equilibrium, such that additional information concerning the
shape of the potential E at critical points u∗ is necessary. The property that enables
the derivation of convergence rates is due, originally, to  Lojasiewicz [27].

Definition 2.1. Let E : R
N → R be a differentiable function. We say that E

has the  Lojasiewicz property at a critical point u∗ ∈ critE if there exists an open
neighborhood Vu∗ of u∗ and constants θ ∈ (0, 1), C > 0 such that

|E(u) − E(u∗)|θ ≤ C‖∇E(u)‖ for all u ∈ Vu∗ . (4)

Based on fundamental results of Haraux and Jendoubi [20, 21] as well as Bégout,
Bolte and Jendoubi [4], the analysis of the dissipative dynamical system (1) can be
summarized in the following theorem which will serve as guideline for the analysis
of the numerical scheme, that we carry out in Section 4.

Theorem 2.2. Let E : RN → R be twice continuously Fréchet differentiable and
coercive. Then, for any initial condition (u0, v0) ∈ R

N × R
N there exists a unique,

global in time solution (u(t), v(t)) ∈ C1([0,∞) ,RN × R
N ) of the Cauchy problem

associated to (1) and all such trajectories converge to equilibrium in the sense that
the limit H∗(u0, v0) = limt→∞ H(u(t), v(t)) exists and

dist ((u(t), v(t)), E) → 0 as t → ∞,

where E =
{

(u∗, 0) ∈ R
N × R

N : ∇E(u∗) = 0
}

is the set of equilibria of the system.
Furthermore, if E consists only of isolated equilibria, then

u(t) → u∗ as t → ∞
for some (u∗, 0) ∈ E and if additionally the system’s potential energy E has the
 Lojasiewicz property with θ = 1/2 at u∗ then there exists ε > 0 small enough such
that E decays exponentially starting with a large enough time t0 > 0

E(u(t)) − E(u∗) ≤ Ce−ε(t−t0). (5)

Exponential decay is achieved also in norm ‖u(t) − u∗‖ ≤ Ce−ω(t−t0).

Proof. We divide the proof into several steps.

Step 1. Local (in time) existence of solutions follows from a contraction principle
argument based on the fact that (1) has a locally Lipschitz continuous right hand
side (due to the regularity of E).

Step 2. Local solutions (u(t), v(t)) ∈ C1([0, tmax) ,RN × R
N ) can be extended

arbitrarily in time based on the coercivity of E. In fact, along solutions we have
that the total energy is decreasing rendering finite time blow up impossible (see [37]
for the general discussion).
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Step 3. Convergence to equilibrium is a consequence of LaSalle’s invariance prin-
ciple (see Theorems 9.2.3, 9.2.7 and Corollary 9.2.9 in [7] which apply directly) as
H is a strict Lyapunov function.

Qwing to the convergence to equilibrium, the decrease property of H and on the
fact that E(u(t)) ≤ H(u(t), v(t)), there exists a large enough time t0 > 0 after which
the trajectory remains in a small enough energy neighborhood of the equilibrium
point and, furthermore, u(t) is confined to a sublevel set of E that is itself contained
in the neighborhood Vu∗ in which the  Lojasiewicz property holds. To derive the
decay estimate (5), we proceed in two steps.

Step 4. First, we prove that, for t ≥ t0 large enough such that the  Lojasiewicz
inequality holds and ε > 0 small enough, the modified energy

H̃(u, v) =
1

2
‖v‖2 + (E (u) − E(u∗)) + ε 〈∇E(u), v〉

RN (6)

satisfies a decay inequality

dH̃

dt
(u, v) ≤ −εH̃(u, v) =

ε

2
‖v‖2 + ε (E (u) − E(u∗)) + ε2 〈∇E(u), v〉

RN , (7)

in which the explicit time-dependence of u, v has been omitted for brevity reasons.
This inequality later yields exponential energy decay along solutions. Indeed, using
energy dissipation equation and and the second equation in (1) we have

dH̃

dt
(u, v) = −2 ‖v‖2 + ε

〈
∇2E(u)u̇, v

〉
RN

+ ε 〈∇E(u), v̇〉
RN

= −2 ‖v‖2 + ε
〈
∇2E(u)v, v

〉
RN

− ε 〈∇E(u), 2v〉
RN − ε ‖∇E(u)‖2 .

As the trajectory remains contained in a closed bounded set

ε
〈
∇2E(u)v, v

〉
RN

≤ εM ‖v‖2

such that after forcing the desired ε2 and applying Young’s inequality to the re-
minder term

(ε2 − 2ε) 〈∇E(u), v〉
RN = ε 〈∇E(u), (ε− 2)v〉

RN ≤ ε

2
‖∇E(u)‖2 +

ε(ε− 2)2

2
‖v‖2

we arrive at

dH̃

dt
(u, v) ≤ −2 ‖v‖2 + εM ‖v‖2 − ε2 〈∇E(u), v〉

RN

+
ε

2
‖∇E(u)‖2 +

ε

2
(2 − ε)2 ‖v‖2 − ε ‖∇E(u)‖2 .

After combining the ‖∇E(u)‖2 terms and using the  Lojasiewicz inequality (4), one
finally obtains

dH̃

dt
(u, v) ≤ −(2 − εM − ε

2
(2 − ε)2) ‖v‖2 − ε (E (u) − E(u∗)) − ε2 〈∇E(u), v〉

RN ,

which gives exactly (7) if ε is taken such that ε
2 ≤ 2 − εM − ε

2 (2 − ε)2.

Step 5. Obviously, the differential inequality (7) implies the exponential decay of

H̃, i.e.,

H̃(u(t), v(t)) ≤ e−ε(t−t0)H̃(u(t0), v(t0)) for all t ≥ t0.
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However, since 〈∇E(u(t)), v(t)〉
RN = d

dt (E(u(t))−E(u∗)) the above decay inequal-
ity rewrites as

1

2
‖v‖2 + (E (u) − E(u∗)) + ε

d

dt
(E(u(t)) − E(u∗)) ≤ e−ε(t−t0)H̃(u(t0), v(t0))

and this provides a differential inequality for E(u(t)) − E(u∗)

d

dt
(E(u(t)) − E(u∗)) ≤ −1

ε
(E(u(t)) − E(u∗)) + e−ε(t−t0)H̃(u(t0), v(t0)).

In view of this inequality, which can be integrated by the variation of constants

formula (and with the notation H̃0 = H̃(u(t0), v(t0)))

E(u(t)) − E(u∗) = e−
1
ε
(t−t0)(E(u(t0)) − E(u∗)) +

H̃0

ε

∫ t

t0

e−
1
ε
(t−s)e−ε(s−t0) ds .

After explicitly computing the integral on the right hand side the desired decay
estimate is obtained under a ε ≪ 1 smallness assumption

E(u(t)) − E(u∗) ≤ e−
1
ε
(t−t0)z(t0) +

H̃0

1 − ε2

(
e−ε(t−t0) − e−

1
ε
(t−t0)

)
.

Step 6. For the proof of exponential norm convergence we refer to [4].

Remark 1. The eventual exponential decay of the potential energy (5) actually
implies the eventual exponential decay of the total energy H.

3. The Strang splitting semidiscretization. Originally developed in a linear
setting, operator splitting methods are based on the idea of replacing the more
complicated (linear) problem ż = (A + B)z by two simpler (sub)problems ż = Az
and ż = Bz which are solved iteratively. In the late 19th century, S. Lie proposed
replacing the exact solution operator eh(A+B) of the problem by the approximation
ehAehB , the so called Lie splitting. In the present work, we will rather focus on the
second order, symmetrized version of the Lie scheme introduced by G. Strang [40]

(see also [28]) eh(A+B) ≈ e
h

2
AehBe

h

2
A. In a very general setting, Hansen, Kramer

and Ostermann [19] have shown that the linearity of the equation is not essential,
as the semilinear abstract Banach space evolution equation

ż = Az + f(z) (8)

can be treated by Strang splitting in exactly the same manner as the linear problem,
replacing only ehB with the solution operator, i.e., nonlinear semigroup, U(h) of
the nonlinear subproblem ż = f(z).

The system (1) is semilinear and fits nicely in the framework of Hansen, Kramer
and Ostermann. Moreover the splitting method can be applied in such a way that
the conservative and dissipative parts of the system are separated. We replace the
original problem (1) by two subproblems

{
u̇ = 0,
v̇ = −2v,

(9)

and {
u̇ = v,
v̇ = −∇E (u) ,

(10)

one being linear, dissipative and explicitly solvable while the second is nonlinear
and conservative.
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This is not the only possible choice for the two subproblems. It is, actually, a
special case (β = 1) of the more general parameterized family of decompositions
featuring in the context damped of semilinear wave equation in [35], namely,

{
u̇ = (1 − β)v,
v̇ = −2v,

and

{
u̇ = βv,
v̇ = −∇E (u) ,

with β ∈ [0, 1]. However, the choice β = 1, that we will concentrate on, seems to
be most appropriate for separating conservative from dissipative effects.

Adopting matrix notations and using {U(t)}t∈R
as a notation for the nonlin-

ear (semi)group generated by the Hamiltonian subproblem (10), we construct the
discrete dynamical system

[
un+1

vn+1

]
= Sh

[
un

vn

]
, Sh =

[
I 0
0 e−hI

]
U(h)

[
I 0
0 e−hI

]
. (11)

Before embarking on a detailed discussion of this approximation’s properties let
us recall the discrete version of LaSalle’s invariance principle that plays a central role
in the subsequent asymptotic analysis. We consider a continuous map T : RN → R

N

and the associated discrete dynamical system

xn+1 = T (xn), (12)

while ET =
{
x∗ ∈ R

N : x∗ = T (x∗)
}

denotes the set of equilibrium points of this
system.

Definition 3.1. We say that Φ : RN → R is a strict Liapunov function for (12) if
Φ is continuous on R

N and Φ(T (x)) < Φ(x) for all x ∈ R
N \ ET .

The fundamental result concerning convergence to equilibrium for discrete dy-
namical systems goes back to J. P. LaSalle. We present an adapted version, based on
[25], that aims at highlighting the similarity to the continuous case used in Section
2.

Theorem 3.2 (LaSalle’s invariance principle). Let Φ : RN → R be a coercive
strict Liapunov function for the discrete dynamical system (12). Then, for any
x0 ∈ R

N the generated trajectory xn = Tn(x0) is bounded and

(i) there exists Φ∗ ∈ R such that limn→∞ Φ(xn) = Φ∗ while

dist (xn, ET ) → 0 as n → ∞.

(ii) Furthermore, if the set of equilibria is discrete, then for some x∗ ∈ ET
xn → x∗ as n → ∞.

The following result shows that the Strang semidiscretization inherits the con-
vergence to equilibrium of the continuous system.

Theorem 3.3. Let E be a coercive C2 potential and assume that the conservative
subproblem (10) does not admit periodic solutions of period equal to the step size
h > 0 then

(i) the equilibrium points (fixed points) of the discrete dynamical system coincide
with those of the continuous system;

(ii) the total energy H is a strict Lyapunov function for the discrete dynamical
system such that
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(iii) for any initial state (u0, v0) ∈ R
N ×R

N the trajectories generated by (11) con-
verge to equilibrium in the sense that the limit H∗(u0, v0) = limt→∞ H(un, vn)
exists and

dist ((un, vn), E) → 0 as n → ∞.

Furthermore, if E consists only of discrete equilibria, then for some (u∗, 0) ∈ E
un → u∗ as n → ∞.

Proof. If (u∗, v∗) is an equilibrium point for the discrete dynamical system generated
by Sh and {U(t)}t∈R

is the nonlinear (semi)group generated by the Hamiltonian
equation (10) then

U(h)

[
u∗

e−hv∗

]
=

[
u∗

ehv∗

]
(13)

and, as the Hamiltonian flow conserves the total energy, H(u∗, e−hv∗) = H(u∗, ehv∗).
For h > 0, this can hold only if v∗ = 0. Reverting to (13) bearing in mind the as-
sumption that U(h) has no periodic points, the only possibility left is that (u∗, 0)
is an equilibrium point for (10), that is, ∇E(u∗) = 0.

To prove that H is a strict Lyapunov function, we analyze the change of the
total energy along each intermediate stage of the splitting. The advantage of this
splitting choice becomes now obvious as the dissipative splitting step only affects
(decreases) the kinetic energy while the conservative splitting step conserves the
total energy. Denoting

[
un+1/3

vn+1/3

]
=

[
I 0
0 e−hI

] [
un

vn

]
,

[
un+2/3

vn+2/3

]
= U(h)

[
un+1/3

vn+1/3

]

we have

H(un+1, vn+1) ≤ H(un+ 2
3
, vn+ 2

3
) = H(un+ 1

3
, vn+ 1

3
) ≤ H(un, vn),

with equality holding only if vn+ k

3
= 0, k = 0, . . . 3, that is, only for exact equilibria

(u∗, 0) ∈ E . The asymptotic behavior of the dynamical systems now follows from
the discrete version of LaSalle’s invariance principle presented in Theorem 3.2.

Remark 2 (accuracy). A straightforward application of results in [19] assures
that the scheme is second-order, for sufficiently regular E (i.e. C3 regularity).

4. Analysis of the averaged vector field splitting numerical integrator.

Taking the Strang semidiscretization as a starting point, we observe that of the en-
suing subproblems, the nonlinear Hamiltonian system is by far the more challenging
one, as the dissipative part is exactly solvable. In view of its structure, we use the
energy-preserving numerical integrator introduced by Quispel and McLaren [36] for
discretizing (10), that is,





un+1 = un + h
2 (vn+1 + vn)

vn+1 = vn − h

∫ 1

0

∇E((1 − α)un + αun+1) dα .
(14)

This Averaged Vector Field (AVF) method is known to be a second-order dis-
cretization of Hamiltonian systems (cf. [36]). Further, it is implicit and requires
anti-derivatives. For most of the common Hamiltonians, such as polynomial ones,
the anti-derivatives can be computed explicitly, or this drawback can be circumvent
by replacing the AVF method with a (possibly higher-order) energy-preserving col-
location method (see Hairer [16]). Notably, in the case of quadratic Hamiltonians, i.
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e., linear Hamiltonian evolution equations, the AVF method is just the well-known
trapezoidal discretization, see [8].

Denoting the discrete (nonlinear) AVF evolution operator generated by (14) with
UAV F
h , the full Strang splitting AVF discretization of the dissipative system (1) is

given by the evolution operator

SAV F
h =

[
I 0
0 e−hI

]
UAV F
h

[
I 0
0 e−hI

]

and reads




un+1 = un + h
2 (ehvn+1 + e−hvn)

ehvn+1 = e−hvn − h

∫ 1

0

∇E((1 − α)un + αun+1) dα .
(15)

The main result of the present work is the following

Theorem 4.1. Let us consider the discrete dynamical system generated by the
numerical scheme (15), that is, the dynamical system generated by the operator
SAV F
h . If the potential E is of class C2 and coercive then the following statements

hold for any step size h > 0:

(i) the equilibrium points of the discrete dynamical system coincide with those of
the continuous system;

(ii) the total energy H is a strict Lyapunov function for the discrete dynamical
system and

(iii) for any initial data (u0, v0) the asymptotic behavior of the system is governed
by

dist
(
[un, vn]T , E

)
→ 0 as n → ∞

where [un, vn]T = (SAV F
h )n[u0, v0]T . Moreover, if E consists only of isolated

equilibria (or equivalently, if all critical points of E are isolated), then

un → u∗ as n → ∞
for some u∗ with ∇E(u∗) = 0.

(iv) Further, if the  Lojasiewicz condition holds at u∗, then there exist ε > 0 and
n0 > 0 such that

E(un) − E(u∗) ≤ C

(
1 − εh

2

1 + εh
2

)n−n0

, for n ≥ n0. (16)

Proof. The fact that the numerical scheme (15) has the same equilibria as the
continuous system is straightforward to check.

Proving that H is a Lyapunov function for the discrete dynamical system gen-
erated by the numerical scheme relies on the same arguments as in the proof of
Theorem 3.3 sice the AVF step conserves the total energy. Convergence to equilib-
rium follows from LaSalle’s discrete invariance principle.

In order to obtain a rate of decay for the potential energy, we start by deducing
a discrete version of the energy balance equation. Let us first observe that, bearing
to the AVF structure (cf. [36]),

〈∫ 1

0

∇E ((1 − α)un + αun+1) dα , un+1 − un

〉

RN

= E(un+1) − E(un). (17)
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Rewriting the second equation in (15) as

ehvn+1 − e−hvn = −h

∫ 1

0

∇E ((1 − α)un + αun+1) dα

and taking the inner product with 1
h (un+1 − un) = 1

2 (ehvn+1 + e−hvn), this being
the first equation in (15), yields the discrete energy balance

e2h

2
‖vn+1‖2 + E(un+1) =

e−2h

2
‖vn‖2 + E(un). (18)

Here the dissipation, a loss of kinetic energy, is hidden in the weights e−2h ≤ 1 ≤ e2h

that multiply the kinetic energy terms. To derive an estimate of the decrease in
total energy we use

e2h ≥ 1 + 2h + 2h2 and e−2h ≤ 1 − 2h + 2h2 (19)

such that (18) becomes

(1+2h2)

(
1

2
‖vn+1‖2 −

1

2
‖vn‖2

)
+E(un+1)−E(un) ≤ −h(‖vn+1‖2 +‖vn‖2), (20)

meaning that the technically useful adjusted total energy

Hh(un, vn) = (1 + 2h2)
1

2
‖vn‖2 + E(un) (21)

is also a strict Lyapunov function. The estimate (20) is sufficient for deducing the
desired behavior as it is a discrete counterpart of (2), which is recovered in the
h → 0 limit.

For the sake of simplicity, the analysis is carried out only in the case E(u∗) = 0.
Our strategy is to establish discrete counterparts for Steps 4 and 5 in the proof of
Theorem 2.2. Accordingly, we introduce the discrete version of the modified energy

H̃ in (6)

H̃n+1
n =

Hh(un+1, vn+1) + Hh(un, vn)

2
+ ε

E(un+1) − E(un)

h
. (22)

Using the AVF property (17) and convenient shorthand notations for the discrete
gradient and energies

∇En+1
n =

∫ 1

0

∇E ((1 − α)un + αun+1) dα , (23)

Hh
n = Hh(un, vn) and En = E(un) (24)

we can write H̃n+1
n in a form that highlights the similarity to (6) namely

H̃n+1
n =

Hh
n+1 + Hh

n

2
+ ε

〈
∇En+1

n ,
1

2
(ehvn+1 + ce−hvn)

〉

RN

. (25)

When comparing to the continuous case one can see that the total energy at time t
has been replaced by the average modified energy of two consecutive steps. Also, the
gradient ∇E of the potential energy has been replaced by its discrete AVF version,
while as a substitute of the velocity v(t) we have a weighted average of consecutive
velocities.

A crucial, but rather technical, part of the proof that we postpone to Appendix
A consists in deriving that for a large enough n0 ∈ N

H̃n+1
n − H̃n

n−1 ≤ −εh

2

(
H̃n+1

n + H̃n
n−1

)
, for all n > n0. (26)



ASYMPT. FOR STRUCTURE-PRESERVING INTEGR. 3329

This discrete version of (7) assures the decay of H̃n+1
n

H̃n+1
n ≤

(
1 − εh

2

1 + εh
2

)n−n0

H̃n0+1
n0

, for all n > n0. (27)

Returning to (22), one can see that the decay of H̃n+1
n translates, after discarding

the positive kinetic energy terms, into a difference inequality for the values of the
potential E

En+1 + En

2
+ ε

En+1 − En

h
≤
(

1 − εh
2

1 + εh
2

)n−n0

H̃n0+1
n0

.

This is an inhomogeneous difference inequality

En+1 ≤
(

1 − h
2ε

1 + h
2ε

)
En +

h

ε

H̃n0+1
n0

1 + h
2ε

(
1 − εh

2

1 + εh
2

)n−n0

.

that can be solved (cf. [13] for a detailed discussion of discrete Gronwall-type
inequalities).Straightforward computations lead to

En ≤
(

1 − h
2ε

1 + h
2ε

)n−n0

En0
+

h

ε

H̃n0+1
n0

1 + h
2ε

n−1∑

j=n0

(
1 − εh

2

1 + εh
2

)n−j−1(
1 − h

2ε

1 + h
2ε

)j−n0

.

Using the sum of a geometric progression we finally arrive at

En ≤
(

1 − h
2ε

1 + h
2ε

)n−n0

En0
+

2 − εh

2(1 − ε2)



(

1 − εh
2

1 + εh
2

)n−n0

−
(

1 − h
2ε

1 + h
2ε

)n−n0


 H̃n0+1

n0
.

For ε ≪ 1, the leading order term is exactly that in (16).

Remark 3 (accuracy). Combining results concerning the accuracy of the semidis-
cretization [19] with those for the AVF method [16] assures that the method (15)
is second order, provided that E is three times continuously differentiable.

5. Discussion of an explicit alternative to the AVF splitting. In this sec-
tion, we discuss the possibility of replacing (15) by an explicit scheme. Despite its
convincing analytic features presented in the previous section, the AVF splitting
discretization is implicit and one would rather rely on an explicit scheme. As a
possible alternative, we consider the same splitting approach as before but with the
energy-preserving averaged vector field solver replaced by a Störmer-Verlet sym-
plectic integrator, that is, precisely the conformal symplectic scheme proposed by
Bhatt, Floyd and Moore in [5]

{
un+1 = un + he−hvn − h2

2 ∇E(un),

ehvn+1 = e−hvn − h
2 (∇E(un) + ∇E(un+1)) .

(28)

The equilibria of this discrete dynamical system coincide with those of the original
continuous system.

As we will see below, the main drawback of the explicit approach is, unsur-
prisingly, related to its step size restriction as well as its failure to reproduce the
monotonic energy decrease of the continuous system. However, provided that the
step size h is small enough, if the potential E is convex and has globally Lipschitz
continuous gradient one can retrace the same qualitative convergence to equilibrium
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as for the AVF discretization. Notably, the Lipschitz condition on the gradient of
the potential is standard in convex optimization [33], but also highly restrictive as
its imposes an at most quadratic growth of E at infinity

To prove our claim, we start by forcing (28) into a form similar to that of (15).
In this sense, observe that using second equation in (28)

un+1 − un =
h

2
(ehvn+1 + e−hvn) +

h2

4
(∇E(un) + ∇E(un+1)) − h2

2
∇E(un).

Now, also forcing an average discrete gradient in the second equation, (28) can be
rewritten as





un+1 = un + h
2 (ehvn+1 + e−hvn) + h2

4 (∇E(un) −∇E(un+1))

ehvn+1 = e−hvn − h∇En+1
n + h

(
∇En+1

n − ∇E(un+1)+∇E(un)
2

)
.

(29)

In hindsight of the AVF energy property (17), taking the inner product with
(un+1 − un)/h yields

e2h

2
‖vn+1‖2 −

e−2h

2
‖vn‖2 + E(un+1) − E(un) =

h2

8
〈∇E(un) + ∇E(un+1), ∇E(un) −∇E(un+1)〉

RN

+

〈
∇En+1

n − ∇E(un) + ∇E(un+1)

2
, un+1 − un

〉

RN

.

(30)

Again, as in the proof of Theorem 4.1, the dissipated energy is hidden in the expo-
nential weights of the kinetic energy terms and can be made explicit by (19). On
the other hand, both error terms on the right hand side of the above energy balance
equation can be masked (see Appendix B. for details) by dissipative effects provided
that the step size conditions

hL < 1 and h < 4 (31)

hold. The ensuing inequality

(1 + 2h2)

(
1

2
‖vn+1‖2 −

1

2
‖vn‖2

)
+ E(un+1) − E(un) ≤ −Ch(‖vn+1‖2 + ‖vn‖2)

has the same structure as (20) and guarantees that the adjusted total energy Hh

is a strict Lyapunov function for the discrete dynamical system generated by (28).
Furthermore, the dissipation of Hh is the same (up to constant C) as in the proof
of Theorem 4.1 such that besides the convergence to equilibrium resulting from
LaSalle’s principle one also has exponential energy decay as in (16).

6. Numerical experiments.

6.1. A one-dimensional double-well potential: eventual exponential decay

and energy dissipation. We start by considering the dissipative system (1) with
a polynomial double-well potential for which the AVF integral can be computed

explicitly E : R → R, E(u) = 1
4

(
u2 − 1

)2
. The (eventual) exponential decay of the

potential energy E(un) is shown in Fig. 1. When starting the evolution from a state
(u0, v0) = (0.1, 0) which is close to the unstable equilibrium point (u∗, v∗) = (0, 0),
at first, the potential energy changes slowly, until the system is accelerated towards
the attracting equilibrium of minimal potential energy (u∗, v∗) = (1, 0). This is a
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worst-case scenario since, whenever the initial state lies in a convexity domain of
the total energy, an accelerated convergence to equilibrium will occur without delay.

Although the qualitative behavior of both energy decay and state-space trajecto-
ries remains similar for a wide range of step size values, a closer inspection reveals
that the onset of exponential decay changes with h. This is related to the fact that
larger step sizes introduce more (numerical) dissipation, albeit in favorable way as
far as minimization of E is concerned.
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Figure 1. The (eventual) exponential decay of the potential en-
ergy (a) as well as state-spaces trajectories (b) for decreasing
step sizes h = 1 and 0.1, both with identical initial conditions
u0 = 0.01, v0 = 0. The double-well potential is depicted in c).

6.2. Nonconvex two-demensional potentials. In order to gain perspective, we
compare the proposed AVF splitting algorithm with the Störmer-Verlet conformal
symplectic integrator (28) proposed in [5]. This explicit method is a viable less
expensive alternative to the AVF only at small step sizes, as it becomes numerically
unstable for large h. At the other end of the spectrum, for large step sizes, the
structure-preserving AVF splitting is compared to a standard implicit scheme, the
classical trapezoidal rule applied to the dissipative system (1)





un+1 = un +
h

2
(vn + vn+1)

vn+1 = vn − h (vn + vn+1) − h

2
(∇E (un) + ∇E (un+1)) .

(32)

A nonconvex potential satisfying the  Lojasiewicz inequality with θ =
1/2. The first two-dimensional example that we consider is a nontrivial potential
satisfying the  Lojasiewicz inequality with coefficient θ = 1/2 (see Ehrhardt et. al.
[11]) in a small enough neighborhood of its unique minimum u∗ = (0, 0), namely

E(u1, u2) =
u2
1

1.5
+

u2
2

1.5
+ 3 sin2

(
u1 + u2√

2

)
. (33)

Another feature of this potential is that it possesses two large symmetric, almost
flat, plateaux away from its sole critical point (see Fig. 2 c)). We investigate the
effect of such a plateau.

For a large step size h = 1 (see Fig. 2 a)), we compare the AVF splitting
method with the implicit trapezoidal method (the Sörmer-Verlet conformal sym-
plectic method being unstable at this step size). Both methods are only vaguely
reproducing the energy plateau. The proposed algorithm, however manages to
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detect its existence. Nevertheless, both methods do well in reproducing the asymp-
totic convergence to equilibrium. A default Dormand-Prince method with step size
h = 0.1 (red) is used as a benchmark.

At a much smaller step size h = 0.1 ( Fig. 2 b)) one can faithfully reproduce also
the intermediate behavior (energy plateau), not just the asymptotic behavior. Here
we compare the proposed AVF-based method to the conformal symplectic method
of [5]. Both methods behave in a very similar manner and, in this case, the explicit
method is a viable, less expensive alternative for the AVF splitting.
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Figure 2. Capturing an energy plateau: a) the AVF Splitting
algorithm (black) compared to the trapezoidal rule (blue) for
h = 1 (and benchmark Runge-Kutta (red)); b) AVF Splitting algo-
rithm (black) compared to the conformal symplectic algorithm (28)
(green) for h = 0.1. The contour lines of the nonconvex potential
(33) are depicted in c).

The two-dimensional Rosenbrock function: a potential exhibiting a

narrow, flat valley. The new experiment is concerned with the two-dimensional
Rosenbrock potential

E : R2 → R
2, E(u1, u2) = (1 − u1)2 + 100(u2 − u2

1)2.
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Figure 3. Erroneous total energy oscillations: a) AVF Split-
ting algorithm (black) compared to the trapezoidal rule (blue) for
h = 0.1 (and benchmark Runge-Kutta (red)); b) AVF Splitting
algorithm (black) compared to the conformal symplectic algorithm
(28) (green) for h = 0.01. The contour lines of the Rosenbrock
potential are depicted in c).

The global minimum (u∗
1, u

∗
2) = (1, 1) of this well-known performance test func-

tion for optimization lies inside a long and narrow, parabolic shaped flat valley.
This function is analytic and hence  Lojasiewicz arround its unique minimum, but
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not with coefficient θ = 1/2, such that our results apply except for the exponential
rate of energy decay.

Throughout Section 2 we have emphasized the structural importance of the en-
ergy decrease for the continuous model. The fact that any discretization inherits
this property cannot be taken for granted, as many well-established algorithms may
fail in this respect. Indeed, one can observe in Fig. 3 that the proposed algorithm
correctly reproduces the decrease of the total energy, while both the trapezoidal
rule (32) and the conformal symplectic method (28) exhibit erroneous oscillations.

7. Conclusions. In the context of geometric numerical integration, Hamiltonian
system have taken center for a long time, but the last couple of decades have wit-
nessed growing interest in the analysis of damped systems. Beyond the obvious
mechanical motivation, there is an additional dimension of dissipative systems per-
taining to optimization and its applications such as Machine Learning.

The present work, deals with a dissipative Hamiltonian system, for which a
splitting-based structure-preserving numerical algorithm that faithfully replicates
the energy-dissipation properties of the continuous system is analyzed. The non-
linear Hamiltonian subproblem is integrated using an energy-conserving averaged
vector field (AVF) method that allows for exact replication of the continuous sys-
tem’s equilibrium points and, more importantly, of its strict Lyapunov function (the
total energy). As a consequence of this deep structural similarity, the asymptotic
convergence to equilibrium of the continuous system is recovered at a discrete level,
with the same energy decay rate. The proof of this result does not rely on backward
error analysis but rather on the aforementioned structural similarity. On the other
hand, a C2 regularity requirement is essential and we do not see any obvious way
of dealing with less regular potentials in the same framework.

The high computational cost of the implicit AVF method is well-known and,
whenever possible, one would prefer to replace it by an explicit (e.g., Störmer-
Verlet) alternative. However, numerical experiments as well as the linear analysis
in [5] show that the stability of such explicit methods comes at a high price in
terms of step size restrictions and erroneous oscillations in total energy. Extending
the present asymptotic analysis to methods based on explicit symplectic integrators
with adaptive step size, as well as a detailed discussion of the small/vanishing
dissipation behavior are possible future directions that we consider.

This study is essentialy nonconvex in nature so it does complement rather than
compete with recent developments in dynamical convex optimization (see [3], [39],
[6], [26], to mention just a few). Ever since Su, Boyd and Candès [41] have pointed
out that

ü +
3

t
u̇ = −∇E (u) (34)

is a continuous model for Nesterov’s accelerated gradient method, the topic has
attracted a great deal of interest in the optimization community (cf. [3]), and
an increasing interest in connections to numerical analysis (see [9] and [24]). The
dynamical system generated by (34) is nonautonomous, nevertheless splitting leads
to the separation of the linear, exactly solvable dissipative subsystem from the
Hamiltonian one, exactly as in this contribution. Second-order symplectic splitting
discretizations are expected to achieve acceleration in a similar way to first order
ones introduced in [39], only with higher accuracy.

Form an optimization perspective, it is quite remarkable that both at the semidis-
crete level and at the level of the full discretization energy decay and equilibrium
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points are exactly preserved by AVF splitting and that, in contrast to common opti-
mization algorithms (see [33]), there is no restriction on the step size which involves
the Lipschitz constant of the objective’s function gradient. This however, is valid
only assuming exact solvability of the implicit problem. Up to our knowledge, the
trade-off between accuracy in solving the implicit equation and step size is not fully
understood, from a long-time asymptotics perspective.

Another natural question that arises concerns possible extensions of the finite-
dimensional analysis presented here to an abstract infinite-dimensional setting.
That is, to complement results concerning semilinear evolution equations in [19]
or [12] with an asymptotic analysis of the discretizations behavior, provided that
solutions of the continuous equation converge to equilibrium. For example, one
can think of semilinear damped wave equations, which have the same dissipative
structure as the one considered in this work. In [35], it has been dealt with such
equations by combining Strang splitting with a finite element spatial discretization,
except that the long-time regime has not been analyzed yet.

Appendix A. Omitted Proof from Section 4. The aim of this section is to
present a detailed derivation of the inequality (26), that is

H̃n+1
n − H̃n

n−1 ≤ −εh

2

(
H̃n+1

n + H̃n
n−1

)
.

To this end, we are still adhering to the notations (23), (24) and hypotheses of
Theorem 4.1, while, for simplicity, we take E(u∗) = 0. Furthermore, n ≥ n0 with
n0 large enough such that (un)n≥n0

lies within a neighborhood of u∗ in which the
 Lojasiewicz inequality holds, that is

En ≤ 1

2
‖∇E(un)‖2 . (35)

By the definition (25) the right hand side of (26) can be written down in full
detail as

H̃n+1
n − H̃n

n−1 ≤ −εh

2
(1 + 2h2)

‖vn+1‖2 + 2‖vn‖2 + ‖vn−1‖2
4

−εh

2

En+1 + 2En + En−1

2

− ε2h
4

〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

− ε2h
4

〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

.

(36)

In order to to arrive at this inequality, our strategy is to start with direct computa-

tions based on the definition of the modified energy H̃n+1
n and the energy dissipation

relation (20) such that in

H̃n+1
n − H̃n

n−1 ≤ −h
2D +

ε

2

〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

−ε

2

〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

,
(37)

we can construct all the desired terms at the cost of O(ε) error terms which are
dominated by the good dissipation term

−h

2
D = −h

2
(1 + 2h2)

(
‖vn+1‖2 + 2‖vn‖2 + ‖vn−1‖2

)
.
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We start by rewriting the scalar products (37) such that velocity differences are
created

H̃n+1
n − H̃n

n−1 = −h

2
D

+
ε

2

〈
∇En+1

n , ehvn+1 − ehvn
〉
RN

+
ε

2

〈
∇En

n−1, e−hvn − e−hvn−1

〉
RN

+
ε

2

〈
∇En+1

n −∇En
n−1, ehvn

〉
RN

+
ε

2

〈
∇En+1

n −∇En
n−1, e−hvn

〉
RN

,

since these appear in the somewhat more lucrative form of the velocity equation in
(15), that reminds of standard finite differences but with a reminder term Rn+1

n =
(eh − 1 − h)vn+1 − (e−h − 1 + h)vn

vn+1 − vn = −h(vn+1 − vn) − h∇En+1
n −Rn+1

n . (38)

Now, it follows from (38) that

H̃n+1
n − H̃n

n−1 ≤

− h

2
D − εh

2

〈
∇En+1

n , ehvn − ehvn+1

〉
RN

− εh

2
eh
∥∥∇En+1

n

∥∥2

− ε

2
eh
〈
∇En+1

n , Rn+1
n

〉
RN

− εh

2

〈
∇En

n−1, e−hvn−1 − e−hvn
〉
RN

− εh

2
e−h

∥∥∇En
n−1

∥∥2 − ε

2
e−h

〈
∇En

n−1, Rn
n−1

〉
RN

+
ε

2

〈
∇En+1

n −∇En
n−1, (eh + e−h)vn

〉
RN

.

Bearing in mind that our aim is to reach (26), we construct scalar products con-
taining ehvn+1 + e−hvn and group the terms as follows

H̃n+1
n − H̃n

n−1 ≤ −h

2
D + T1a + T1b + T2 + T3,

T1a = −εh

2

〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

− εh

2
eh
∥∥∇En+1

n

∥∥2

T1b = −εh

2

〈
∇En

n−1, ehvn + e−hvn
〉
RN

− εh

2
e−h

∥∥∇En
n−1

∥∥2

T2 =
ε

2

〈
∇En+1

n −∇En
n−1, (eh + e−h)vn

〉
RN

− εh

2

〈
∇En+1

n −∇En
n−1, (e−h − eh)vn

〉
RN

T3 = −ε

2
eh
〈
∇En+1

n , Rn+1
n

〉
RN

− ε

2
e−h

〈
∇En

n−1, Rn
n−1

〉
RN

.

The reminder of the proof concentrates on finding appropriate upper bounds for
each of these terms. In view of (36) we force a desired coefficient for the scalar
product term in T1a, that is

T1a = − ε2h

4

〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

− εh

2

(
1 − ε

2

) 〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

− εh

2
c
∥∥∇En+1

n

∥∥2 ,
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and proceed by using e−hvn = ehvn+1 + h∇En+1
n together with the inequality

−ab ≤ a2

4 + b2 to get

− εh

2

(
1 − ε

2

) 〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

≤

εheh

4

∥∥∇En+1
n

∥∥2 + εheh
(

1 − ε

2

)2
‖vn+1‖2.

Based on the fact that eh > 1,

T1a ≤− ε2h

4

〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

− εh

4

∥∥∇En+1
n

∥∥2

+ εheh
(

1 − ε

2

)2
‖vn+1‖2

holds true and, as in the analysis of the continuous case, we would like to use the
 Lojasiewicz inequality to produce potential energy terms on the right hand side
of the previous inequality. This is not directly possible, since the term appearing
contains the average not exact gradient. Nevertheless, after some preparations and
at the cost of some controllable error terms, energy contributions can be produced.
To this end, we start by observing that

‖∇E(un)‖2 =
〈
∇E(un), ∇En+1

n −∇En+1
n + ∇E(un)

〉
RN

=
〈
∇E(un), ∇En+1

n

〉
RN

+
〈
∇En+1

n + ∇E(un) −∇En+1
n , ∇E(un) −∇En+1

n

〉
RN

≤ 1

2
‖∇E(un)‖2 +

1

2

∥∥∇En+1
n

∥∥2

+
〈
∇En+1

n , ∇E(un) −∇En+1
n

〉
RN

+
∥∥∇E(un) −∇En+1

n

∥∥2 ,
or, rearranging,

−1

2

∥∥∇En+1
n

∥∥2 ≤ −1

2
‖∇E(un)‖2 +

∥∥∇E(un) −∇En+1
n

∥∥2

+
〈
∇En+1

n , ∇E(un) −∇En+1
n

〉
RN

.
(39)

In order to estimate both undesired terms we apply the mean value Theorem

∇E(un) −∇En+1
n =

∫ 1

0

(∇E(un) −∇E((1 − α)un + αun−1)) dα

= −
(∫ 1

0

∇2E(ũα
n)α dα

)
(un+1 − un)

= −
(∫ 1

0

∇2E(ũα
n)α dα

)
h

2
(ehvn+1 + e−hvn),

Based on the fact that E is C2 and since the sequence (un) remains in closed
bounded domain, there exists M > 0 such that

∥∥∇E(un) −∇En+1
n

∥∥2 ≤ h2

4
M2C

(
‖vn+1‖2 + ‖vn‖2

)
.

On the other hand, inserting ∇En+1
n = − 1

h (ehvn+1 − e−hvn) in the scalar product
term of (39) yields

∣∣〈∇En+1
n , ∇E(un) −∇En+1

n

〉
RN

∣∣ ≤ 1

4
MC

(
‖vn+1‖2 + ‖vn‖2

)
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such that (39) becomes

−1

2

∥∥∇En+1
n

∥∥2 ≤ −1

2
‖∇E(un)‖2 + C

(
‖vn+1‖2 + ‖vn‖2

)
.

In a very similar manner, one deduces also the symmetric estimate

−1

2

∥∥∇En+1
n

∥∥2 ≤ −1

2
‖∇E(un+1)‖2 + C

(
‖vn+1‖2 + ‖vn‖2

)
.

By taking the average of the two and using the  Lojasiewicz inequality (35)

−
∥∥∇En+1

n

∥∥2 ≤ −1

2

(
‖∇E(un+1)‖2 + ‖∇E(un+1)‖2

)
+ C

(
‖vn+1‖2 + ‖vn‖2

)

≤ − (En+1 + En) + C
(
‖vn+1‖2 + ‖vn‖2

)
.

Reverting to the estimate for T1a, we finally have

T1a ≤ −ε2h

4

〈
∇En+1

n , ehvn+1 + e−hvn
〉
RN

− εh

2

(
En+1 + En

2

)

+
εh3

16
C
(
‖vn+1‖2 + ‖vn‖2

)
+ εheh‖vn+1‖2.

(40)

When dealing with the term T1b we take a similar approach. However, it is not a
completely straightforward matter due to the asymmetry eh > 1, e−h < 1. Again,
we start by forcing a desired scalar product term and deduce, from e−hvn−1 =
ehvn + h∇En

n−1 that

T1b = − ε2h

4

〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

− εh

2

−h ∥∥∇En
n−1

∥∥2

− εh

2

(
1 − ε

2

) 〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

≤− ε2h

4

〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

− εh

2
e−h

∥∥∇En
n−1

∥∥2

− εh

2

(
1 − ε

2

) 〈
∇En

n−1, 2ehvn
〉
RN

− εh2

2

(
1 − ε

2

)∥∥∇En
n−1

∥∥2 .

Then, choosing ε < 1, which assures 1− ε
2 > 1

2 , and based on a weighted version of
Young’s inequality

T1b ≤− ε2h

4

〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

− εh

4

∥∥∇En
n−1

∥∥2

+ εhe3h
(

1 − ε

2

)2
‖vn‖2.

Again, as in the case of T1a, owing to the  Lojasiewicz inequality

T1b ≤ −ε2h

4

〈
∇En

n−1, ehvn + e−hvn−1

〉
RN

− εh

2

(
En+En−1

2

)

+
εh3

16
C
(
‖vn‖2 + ‖vn−1‖2

)
+ εhe3h‖vn‖2.

(41)

Now, we deal with T2. Introducing the notation K(h) = (eh + e−h) − h(eh −
e−h) we can write T2 = K(h) ε

2

〈
∇En+1

n −∇En
n−1, vn

〉
RN

and see that this term

corresponds to the Hessian term ∇2E in the analysis of the continuous model.
Indeed, for each α ∈ [0, 1], the mean value theorem gives

〈
∇En+1

n −∇En
n−1, vn

〉
RN

≤
∫ 1

0

∥∥∇2E(ũα
n)
∥∥ ‖ṽαn‖ ‖vn‖ dα
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for ṽαn = (1 − α)(un − un−1) + α(un+1 − un) and intermediate points ũα
n on the

segment [(1 − α)un−1 + αun, (1 − α)un + αun+1].
Here, since for all n ≥ n0, un lies in a closed, bounded, small enough en-

ergy sublevel set of E and E is C2, there exists a constant M > 0, such that∥∥∇2E(ũα
n)
∥∥
Op

≤ M for all α ∈ [0, 1] and n ≥ n0. Also, as α ∈ [0, 1], we have

‖ṽαn‖ ≤ ‖un+1−un‖+‖un−un−1‖ =
h

2

(
eh‖vn+1‖ + (eh + e−h)‖vn‖ + e−h‖vn−1‖

)
.

Combining all these yields, for some positive constant C > 0,

T2 ≤ εh

4
C
(
‖vn+1‖2 + 2‖vn‖2 + ‖vn−1‖2

)
. (42)

The final term T3 = − ε
2e

h
〈
∇En+1

n , Rn+1
n

〉
RN

− ε
2e

−h
〈
∇En

n−1, Rn
n−1

〉
RN

can
also be estimated in terms of square norms of consecutive velocities by recalling
that Rn+1

n = (eh − 1 − h)vn+1 − (e−h − 1 + h)vn together with

−∇En+1
n =

1

h
(ehvn+1 − e−hvn) and −∇En

n−1 =
1

h
(ehvn − e−hvn−1).

Actually, one has

T3 ≤ εh

2
C
(
‖vn+1‖2 + 2‖vn‖2 + ‖vn−1‖2

)
, (43)

for some positive constant C.
Taking into account all the estimates (40),(41),(42) and (43) for the four terms

T1a, T1b, T2 and T3 we can observe that the desired inequality (36) has been obtained
since, for ε is small enough, the dissipation term −h

2D dominates the error terms
that we have created and which all have O(ε) coefficients.

Appendix B. Omitted estimates for the Störmer-Verlet splitting. This
section deals in more detail with the two reminder terms on the right hand side of
(30). More precisely, we show that both

Φ1 =
h2

8
〈∇E(un) + ∇E(un+1), ∇E(un+1) −∇E(un)〉

RN , (44)

Φ2 =
h2

8

〈
∇En+1

n − ∇E(un) + ∇E(un+1)

2
, un+1 − un

〉

RN

(45)

are bounded from above by velocity terms.
The mean value theorem allows us to rewrite the first equation of (29) as

un+1−un =
h

2
(ehvn+1+e−hvn)+

h2

4
∇2E(ξn+1

n )(u)n+1−un) for ξn+1
n ∈ [un, un+1]

and in view of the C2 regularity and the Lipschitz condition for ∇E,
∥∥∇2E(ξn+1

n )
∥∥ <

L the step size conditions (31) implies h2

4

∥∥∇2E(ξn+1
n )

∥∥ < 1. So

un+1 − un =

(
I − h2

4
∇2E(ξn+1

n )

)−1
h

2
(ehvn+1 + e−hvn)

an finally

‖un+1 − un‖ ≤ 1

1 − h2

4 L

h

2

∥∥ehvn+1 + e−hvn
∥∥ . (46)
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Now, we are in position to estimate Φ1 and Φ2. On one hand, based on the first
equation in (28) and the convexity of E

Φ1 ≤ h2

8
‖∇E(un+1) −∇E(un)‖2 +

h2

4
〈∇E(un), ∇E(un+1) −∇E(un)〉

RN

≤ h2

8
L2

(
1

1 − h2

4 L

)2
h2

4

∥∥ehvn+1 + e−hvn
∥∥2

+
he−h

2
‖vn‖

L

1 − h2

4 L

h

2

∥∥ehvn+1 + e−hvn
∥∥

which leads, for h small enough, to the desired estimate, i.e., Φ1 ≤ Ch(‖vn+1‖2 +
‖vn‖2).

On the other hand, to deal with Φ2 we observe that

2∇En+1
n −∇E(un) −∇E(un+1) =

∫ 1

0

∇E ((1 − α)un + αun+1) −∇E(un) dα

+

∫ 1

0

∇E ((1 − α)un + αun+1) −∇E(un+1) dα

and the mean value theorem together with ((1 − α)un + αun+1) − un = α(un+1 −
un), ((1 − α)un + αun+1)−un+1 = (α−1)(un+1−un) and (46) leads to the desired
conclusion

Φ2 =
1

2

〈[∫ 1

0

(
α∇2E(η(α)) + (α− 1)∇2E(ζ(α))

)
dα

]

(un+1 − un), (un+1 − un)〉
RN

≤ L ‖un+1 − un‖2 ≤ L

1 − h2

4 L
h2
∥∥ehvn+1 + e−hvn

∥∥2 .
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