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Abstract

This work deals with a comparison of different numerical schemes for the simulation
of contaminant transport in heterogeneous porous media. The numerical methods
under consideration are mixed hybrid finite element (MHFEM), Galerkin finite el-
ement (GFEM), and finite volume (FVM). Concerning the GFEM we use linear
and quadratic finite elements with and without upwind stabilization. Besides the
classical MHFEM a new and an upwind scheme are tested. We consider higher
order finite volume schemes as well as two time discretization methods: backward
Euler (BE) and the second order backward differentiation formula BDF(2). It is
well known that numerical (or artificial) diffusion may cause large errors. More-
over, when the Péclet number is large, a numerical code without some stabilising
techniques produces oscillating solutions. Upwind schemes increase the stability but
show more numerical diffusion. In this paper we quantify the numerical diffusion for
the different discretization schemes and its dependency on the Péclet number. We
consider an academic example and a realistic simulation of solute transport in het-
erogeneous aquifer. In the latter case, the stochastic estimates used as reference were
obtained with global random walk (GRW) simulations, free of numerical diffusion.
The results presented can be used by researchers to test their numerical schemes
and stabilization techniques for simulation of contaminant transport in soil.
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1 Introduction

Environmental pollution of soils and groundwater was and remains an important
problem of the world. There are hundred thousands of possible contaminated sites
in western Europe alone! An active remediation of all these sites is practically (be-
cause of costs and time) impossible. Alternatively, natural attenuation has been
recognized as a promising technology to restore groundwater and soil contaminated
with organic pollutants because of its cost effectiveness and its potential capability
of completely destroying the harmful compounds [1]. In comparison with conven-
tionally engineered remediation technologies, natural attenuation offers a number
of advantages, especially when intrinsic bioremediation is occurring [41]. Among
these we mention: (a) during intrinsic bioremediation, contaminants can ultimately
be transformed to innocuous by-products, not just transferred to another phase or
place; (b) is less costly; (c) operate in situ. However, the decision of applying natural
attenuation depends essentially on the reliable prediction of the contaminant fate
and this is not an easy task [27]. Together with laboratory and field experiments, a
reliable and efficient simulation tool for contaminant transport in heterogeneous soil
is needed. This includes a comprehensive mathematical model, modern discretiza-
tion schemes, fast nonlinear and linear solvers et cetera.

In this paper we focus on the very important problem of numerical diffusion. There
is well recognized that numerical diffusion leads to erroneous solutions and therefore
to false prognoses [9,20,21,23]. We propose a systematic comparative study of the
numerical diffusivity of various numerical schemes, including higher order or upwind
schemes. The method we use to quantify the numerical diffusion is very simple to
implement and has a wide applications field. The results obtained can be used by re-
searchers as a reference (benchmark) to test their numerical schemes or stabilization
techniques.

We compare the accuracy with respect to numerical diffusion of the most popu-
lar numerical methods, e.g. GFEM, FVM and MHFEM when they are applied to
advective-diffusive transport of contaminants in soil. We consider the local mass
conservative MHFEM based on the lowest order Raviart-Thomas elements. Besides
the classical MHFEM approach (see [11]) we propose a new, more robust MHFEM
and an upwind variant of it. We continue with linear and quadratic GFEM with
or without upwinding. As next, FVM, including higher orders are involved. For the
temporal discretization we consider two implicit schemes: BE and BDF(2). To the
best of our knowledge, a systematic comparative study of the numerical diffusivity
of these methods does not exist. Here, we do this not only for an academic prob-
lem, but also for a representative, typical simulation of contaminant transport in
heterogeneous soil. We formulate two tests:

T1 A problem with an analytical solution: a two-dimensional Gauss bell (Sec. 3.1).
We vary the Péclet number (by changing the magnitude of water velocity and/or
the diameter of the mesh) to see its influence on numerical diffusion.

T2 A realistic solute transport problem in a heterogeneous soil (Sec. 3.2). The hy-
draulic conductivity is stochastically generated (log-normal distributed). The wa-~



ter flux is obtained by solving the flow equation.

We quantify the artificial diffusion by numerically computing the slope of the cen-
tral second spatial moment of the solute concentration. In the first example (T1),
we deal with a deterministic problem and it can be elementarily shown, that, for a
big-enough domain, the half-slope of the second moment gives exactly the diffusion
coefficient. For the second example (T2), where we conduct stochastic simulations,
the half-slope of the second moment of the concentration estimates the effective dif-
fusion coefficient (see e.g. [3,17,37]). Alternatively, the value of the effective diffusion
coefficient can be theoretically obtained by homogenization or by stochastic upscal-
ing methods (see e.g. [3]). Moreover, effective coefficients are estimated through
numerical simulations with the Global Random Walk (GRW) algorithm, a superpo-
sition of a huge numbers of Particle Tracking procedures which is free of numerical
diffusion and yields highly accurate results. The difference between the computed
half-slope of the second moment of the solute concentration and the theoretical
effective diffusion coefficient (or the one obtained by GRW simulations) gives the
numerical diffusion.

The structure of this paper is as follows: after the motivation given in the intro-
duction (Sec. 1) we present the mathematical model of contaminant transport in
variable saturated porous media (Sec. 2). Also a brief description of the different
numerical methods (MHFEM, GFEM, FVM, GRW) is given there. The results for
the selected test examples are discussed and compared in Sec. 3 followed by the
conclusions of the presented work (Sec. 4).



2 Mathematical model and discretization schemes

In this section we first present the mathematical model and then briefly summarize
the used numerical methods: MHFEM (Sec. 2.2), GFEM (Sec. 2.3), FVM (Sec. 2.4)
as well as the GRW method (Sec. 2.5). For more detailed descriptions see the cited
literature.

2.1 Mathematical model

Let Q be the computational domain in IRY, d = 1,2, or 3, with boundary 99 and
let J = (0,7 be some finite interval with 7" denoting the final time. The diffusive-
advective transport of a contaminant in soil can be mathematically described by

0:(0c) =V - (DVe—Qc) =0 inJ xQ, (1)

where ¢(t,x) denotes the concentration of the contaminant and D is the diffusion-
dispersion tensor. The water content © and the water flux Q are determinated by
solving the Richards’ equation, e.g. (4). Dirichlet, Neumann and/or Flux boundary
conditions complete the model. For a more general model, including multicomponent
reactive transport with equilibrium or non-equilibrium sorption we refer to [30].

The water flux Q(t,x) appearing in (1), as well as the water content ©(1)), are
obtained by solving the mass balance equation for water, which is assumed incom-
pressible

90W)+V-Q=0 (2)
and the Darcy’s law
Q=—-K(©(W)Vy, (3)

together with initial ¢/(t = 0,x) = V;(x) and boundary conditions. Above, 1 (t,x)
is the pressure head and K the hydraulic conductivity. We neglected the influence
of gravity. Combining the equations (2) and (3) one obtains the Richards equation

90—V -KO@W)Viy =0 inJxQ, (4)

which is a typical mathematical model for water flow through saturated /unsaturated
soil. For the coefficient functions O(+) and K (-) functional dependencies of the pres-
sure are assumed, e.g. van Genuchten-Mualem, so that the unknowns in (2) — (3)
are reduced to two. Nevertheless, in this work we consider only saturated flow, e.g.
O(¢) = Og and K(O(¢)) = Kg are constants. We also restrict ourselves to two
dimensional simulations (d = 2).

The following numerical schemes are presented for homogeneous Dirichlet boundary
conditions for both flow and transport problems. This is just for the sake of simplicity
and does not affect in any way the generality of the schemes.



2.2 MHFEM - mixed hybrid finite elements

We present here a classical MHFEM scheme based on the lowest order Raviart-
Thomas finite elements and two new variants of it to simulate solute transport in
porous media. For higher order MHFEM schemes we refer to [10]. In what follows,
L*(Q) is the space of square integrable functions on € and (-, -) for the inner product
on L?(Q2). The functions in H(div; Q) are vector valued, having a L? divergence. For
the discretization in time we let N € N be strictly positive, and define the time
step 7 =T/N, as well as t, = n7 (n € {1,2,..., N}). Furthermore, we let 7, be a
regular decomposition of 2 into closed d-simplices; h stands for the mesh size. We
denote by S, = S USP the set of all faces of Ty, where S} are interior faces and
SP are faces on the boundary. We always denote by n the outer normal. We use the
discrete subspaces W), C L*(Q) and V}, C H(div; Q) defined as

W, == {p € L*(Q)| p is constant on each element T € Ty},
()
Vii={qe H(div;Q)| gqr=a+bx,ac R beR forall T € T,}.

In other words, W), denotes the space of piecewise constant functions, while V}, is
the lowest order Raviart-Thomas space (see [11]).

The scheme for solving the water flow (2)-(3) is based on MFEM and Euler implicit
and reads

Problem 2.1 Forn=1,...,N let )" be given and find (¢, Q%) € Wy, x Vj, such
that

<@(¢Z) - @( Z_l)’ wh) + T(V : QZ? wh) 207 th € Wh7 (6)
(K~ OWmM)Qh, vi) = (U, V- viy) =0, Vv, €V (7)

Remark 2.1 The problem above is still nonlinear. We solve it by a robust lineariza-
tion scheme, which is first order convergent (see [26]) or by Jager - Kacur scheme
[16,15] or Newton method (see [29] for the analysis of the convergence of the Jager
- Kacur and Newton methods in the case of mized finite elements). The solution of
Problem 2.1 is obtained by hybridization (for details see [11] or below when applied
to the transport equation).

Remark 2.2 For the convergence of the scheme for the flow Problem 2.1 we refer
to [2] for strictly unsaturated flow. For saturated/unsaturated flow one can use the
Kirchhoff transformation and obtain a similar scheme. That scheme is analysed in
[28]. For the scheme without the Kirchhoff transformation and unsaturated/saturated
flow there is no rigorous convergence result so far.

To obtain a mixed formulation for the transport equation (1) we first introduce the
flux variable q as additional unknown:

0(©c)+V-q=0, q=-DVec+Qc inJxQ. (8)



The fully discrete mixed approximation of (8) now reads as follows:

Problem 2.2 Forn=1,...,N let ©F, O} 1 QR ! be given and find
(cp,an) € Wy, x Vi, such that there holds

(Ohch — O eh~ wn) + 7(V -y, wp) =0, (9)
(D™ 'ay, vi) — (D'Qg i, Vi) — (e, V- va) =0 (10)

for all w, € Wy, and vy, € V},.

Remark 2.3 The convergence of the scheme is analysed in [31,32] in a very general
frame, i.e. including nonlinear sorption and degradation.

Unfortunately, the resulting equations (9)—(10) lead to a linear system of equations
with an indefinite matrix such that standard iterative solvers cannot be applied. To
overcome this difficulty, we use a hybridization technique (see [11]). Its basic idea
is to relax firstly the continuity constraint of the normal components of the fluxes
over inter-element faces that is implied by v € H(div; ). The continuity constraint
is then ensured by means of an additional variational equation involving Lagrange
multipliers. Precisely, the space V}, is replaced by

Vi={aeL*Q)qr=a+bx,ac R bcR forall T € T}
The discrete space for the Lagrange multiplier is defined by
Apo={X € L*(8,) | \p = constanton E VE € S, and A\p = 0 VE € SP}.

The fully-discrete mixed hybrid variational formulation of the overall system (9)—
(10) then reads as follows:

Problem 2.3 Forn=1,...,N let or, et QR it be given and find
(N ap) € Wy, X Ao x Vi, such that there holds

(Ohcp — @Z‘lcz_l, wy) + 7(V - qp, wp) =0, (11)
D7'ap, va) — (A Vevi) + > (AR, v m)or = (D 'QR R, Vi) (12)
TeTh
> (s iy - m)or =0 (13)
Tt

for all w, € Wy, v, € Vh, tn € Apo.

The hybridization increases first the complexity of the nonlinear systems. This draw-
back can be resolved by applying static condensation (see [11]) and eliminate now
the internal degrees of freedom. Moreover, the Lagrange multipliers can be used to
construct a second order accurate approximation of the primary variables [11,8]. The
last observation also stays at the basis of the development of the two new schemes
presented at the end of this section. The new schemes are much more robust for
convection-dominated problems.



Let now ©F and ¢/ denote the water content and concentration, respectively, on
the element T, {¢}¢}scr, {Q%g}scr the components of the flux of contaminant and

water, respectively, in the local Raviart-Thomas space basis {wrg}scr(x) = x d_\;\s
(cf. [11]), Brss := / (D 'wyg) - wrg dx, and A% be the constant Lagrange multi-
T

plier on the face S. We denote by |T'| := [, dx the area (volume) of element 7" and
by xg the corner of 7" which is not on S. We obtain from (11)-(13) the following
system of nonlinear equations:

Mass conservation equation:

onch — @nlenl 4 |;| S is=0 VTeT. (14)
ScT

Equation for the flux:

Y Brssqrs = ) BrssQpecp+cp =g VT E€T,SCT. (15)

s'CT S'cT
Continuity of the flux over faces:

Y ghs=0 VSeS. (16)
o5
The system of equations (14)—(16) gives the classical MHFEM scheme (referred
to as MHFEM 0 in Sec. 3) for solute transport in porous media.

A new MHFEM scheme is obtained by using the Lagrange multipliers, instead
of the piecewise constant concentrations, for discretizing the convective term in (1).
Instead of (15), this yields

Z BTSS/Q%S/ = Z BTSS/Q%S/ATL/ + C?w — )\g VT e 771, ScT. (17)
s'cT S'cT
The equations (14) and (16) remain unchanged. The new MHFEM scheme (re-
ferred to as MHFEM 1 in Sec. 3) is given by (14), (17) and (16). Numerical results
show that the new scheme is much more robust for convection-dominated problems
and has the same convergence properties as the classical scheme. A rigorous analysis
of this new scheme is ongoing [33].

We also propose a full upwind MHFEM scheme (referred to as MHFEM 2 in
Sec. 3) given by (14), (16) and

Z BTSS/q%S, = Z BTSS/Q%SIQS’ + C% — )\g VT e 7;1, ScT. (18)
S'cT S'cT
with
C’?’? Zf Q%S Z 0
ag =

2N\§ — cp, otherwise



The upwind MHFEM scheme is suitable for highly convection-dominated-problems.
The above schemes are, up to our knowledge, not reported so far in the literature.

Remark 2.4 To obtain a discrete mazximum principle, the mass matriz in (15)
should be computed by a quadrature formula (cf., e.g. [24]), which has also been
implemented.

The three schemes were implemented in the UG toolbox (see [6]). The linear systems
are solved by a multigrid method.

2.3 GFEM - Galerkin finite elements

For a description of the general case see [14] and for a more detailed description of
Galerkin finite elements see e.g. [19].

For the space discretization we use the subspace V,GFEM c H1(Q)
VM = {v € H'(Q)|vir € Pu(T)} (19)

with k = 1,2 where Py(T) denotes the space of all polynomials up to the degree k.
We restrict ourselves to Lagrange elements, i.e., all degrees of freedom are function
values in fixed points. This points are called nodes. Let the nodes a; (i = 1,..., M) be
sorted such that for ¢ = 1,..., M, a; is an inner node. The basis function associated
with the node a; is denoted by ¢;.

For the time discretization the BE method or the BDF(2) method is used, i.e., the
time derivative is replaced by the difference quotient

n n—1 n n—1 n—2
T T

(20)

At the first time step (n = 1) the backward Euler method is applied because there

is no value u~1'.

Differentiating out in (1) and using (2) leads to
©0ic—V - (DVe)+Q-Ve=0. (21)

So the fully discrete formulation of the transport problem is in case of the backward
Euler method:

Problem 2.4 Find c; € V}, such that there holds

(Oh(ch —

T

)7 Uh> + <DVCZ7 VUh> + <QZ . ch’ Uh) =0 (22)

for all v, € VEFEM,

and in case of the BDF(2) method:



Problem 2.5 Find c;, € V}, such that there holds

@1 1 _ .0
On(en = b)) | (1g el T+ (Q) - Vb oy) = 0 (23)

T

for all v, € VEFEM and for alln =2,...,N find ¢} €V, such that there holds

(OF(1.5c} — 2¢7 1 + 0.5¢)72), vp) N
T

for all v, € VEFEM,

(DVey, Vop) +(Qp - Ve, o) =0 (24)

All integrals without space derivatives are assembled using mass lumping. These
integrals are evaluated using a nodal quadrature formula, i.e. a quadrature rule with
the quadrature points a; and weights

Wi :/ngi(x)dx. (25)

This is not possible for standard quadratic elements because some weights would be
zero. Instead of that quadratic elements enriched by a bubble function (named P»)
can be used (see [13]).

Let ¢} be the concentration value in the node a; at the time ¢,,. From (22) and (24)
respectively we obtain the following system of equations

w0 (a:) Dycs + /Q DV - Vidx + /Q Q- Velpdx =0 i=1,....,M, (26)

where the difference quotient D,, is DP¥ in case of (22) and DPP?2 in case of (24).
The integrals are evaluated with an appropriate quadrature rule.

For the convection dominated case a finite volume stabilization for linear elements
is implemented. Let €2 denote the control volume (Donald-Diagram) associated to
the node a;. The integral stemming from the convective term is approximated by

[V @eendxx [ V(@) dx= [ Q) mdo. (27)
Q Q o,

Another point of view is that we carry out a finite volume discretization for the whole
partial differential equation. Let us consider the finite volume scheme treated in [19,
chapter 6.2]. In this FV scheme, the discretization of all terms except the advective
coincide with that one of the linear finite element method using mass lumping. Hence
we only have to replace the advective term in the linear finite element discretization
to get a finite volume scheme. The boundary integral on the right hand side of (27)
can be discretized using standard finite volume techniques. We have implemented
full upwinding, exponential upwinding and partial upwinding (see e.g. [19, chapter

6.2]).

The Galerkin finite elements are used only for the transport problem (1). The flow
problem (2)-(3) is solved using mixed hybrid finite elements (see sec. 2.2).

The model was implemented using a software kernel for parallel computations in the
field of PDEs called M++ (see [42]).



2.4 FVM - Finite Volume Method

In this section we briefly present the classical finite volume method and a general-
ization of the method to higher order trial spaces. In order to keep the presentation
simple, we restrict ourselves to two dimensions only. However, generalizations to
higher dimensions are straightforward. The classic FVM can be found in e.g. [5], a
second order FVM in [22] and recently an arbitrary order FVM has been described
in [39] and [40].

The FVM uses a reformulation of the equations (1) and (2). For an arbitrary control
volume B C €2 the two equations

8t/@c dz—/(DVc—Qc)-ndS:O, (28)

B OB
at! o) dr —aé K(O(4))Ve -n dS = 0. (29)

express the conservation property of the system. In order to discretize these equa-
tions we will first choose an appropriate trial space for the unknown functions are
¢(t,x) and ¢(t,x) and then describe our choice of control volumes B.

By Pi we denote again the space of polynomials of degree at most k. C°(Q) is the
space of continuous functions on €2 and we will use a trial function space for triangles
defined by

VEVM = {uy, € C°(Q); uply € Py(T) for all T € T} (30)

An appropriate choice of basis functions are given by Lagrange interpolants for
interpolation nodes on the triangles. Therefore, for each triangle T € 7T, denote its
corners by {ag, a;,as} (a; € R?) and use barycentric coordinates (Ao, A1, A2) in order
to describe any point x € T, i.e., one has a representation

X = Z)\Z(X) a;, VxeT. (31)

2
=0

On each triangle we have a set of (k;r2> nodes for a given degree k defined to be the

points n;, ;, of T" with barycentric coordinates

(]g?];?]j)’ Z0721722:07"‘7k7 ZO+7/1+22:I€' (32)

We introduce a second decomposition By (2) := {By, By, Bs, ...} of the domain
into (open) control volumes satisfying

UB: =10, (33)

BiNB;=0ifi+#j. (34)

10



a)

Fig. 1. Examples of control volume construction: Shown are triangles (lines), degrees of
freedom (points) and control volume borders (dashed lines) and: a) linear trial space with
a subcontrol volume (grey area) b) quadratic trial space with subtriangles (pointed lines)
¢) resulting dual decomposition for a set of triangles.

The shape of the control volume B; will be restricted to polygons, though this is not
necessary in general. Furthermore, we will construct the control volumes the way
that one and only one degree of freedom of the trial space will be contained in one
control volume.

In the case of a linear trial space the degrees of freedom are only located in the
corners of the triangles and the control volumes can be constructed by connecting the
barycenter of every triangle T" € T, by straight lines with each edge midpoint. Hence,
every triangle is partitioned into three parts (subcontrol volumes) and every part is
associated with one node of the triangle. Now the control volume B; containing the
node i is defined by the union of all subcontrol volumes being associated with this
node. A visualization is given in Fig. 1a).

For the higher order trial spaces we can reduce the construction of the control
volumes to the procedure of the linear case. Indeed, we subdivide the triangles into
a set of smaller subtriangles using the isolines

j=1,.,k—1, i=0,1,2. (35)

On all resulting subtriangles, nodes are located in the corners only so that the
structure of the subtriangles is equivalent to the structure of triangles with linear
trial functions. Now we use the construction described above on these finer triangles.
An example for a quadratic triangle is given in Fig. 1b) and for a set of triangles
the control volumes are shown in Fig. 1c).

Now we can set up the FVM schemes using BE time stepping:
Problem 2.6 Forn=1,...,N find (c},v1) € VIVM x VEVM gatisfying

/@;;c;; do — /@z—lcz—l do — 7 / (DVe? — Qie?) -n dS = 0, (36)
B B 0B

Jewn) de— [e@wi ) do—r [ K@©@)Ve;-nds =0  (37)
B B 0B

for all control volumes B € By(2). Qp = —K(O(}))Vy is the Darcy velocity and

11



the integrals over B and OB have to be replaced by appropriate quadrature rules and

O = O(Yy) for alln € {0,...,N}.

The BDF(2) time stepping scheme is obtained by replacing the time discretization
DBE with DBPEF2 a5 described in the previous section. The FVM-schemes of arbi-
trary order are implemented in the UG toolbox (see [6]). In Sec. 3 we denote by FV
t the FVM scheme of order .

2.5 GRW - the global random walk algorithm

The GRW algorithm is a generalization of the particle tracking (PT) method which
increases the speed of the computations and considerably improves the accuracy of
the numerical simulations [38]. For a two-dimensional problem and constant porosity,
the solution of a parabolic equation of form (1) is described using N particles which
move in a grid, undergoing advective displacements and diffusive jumps according
to the random walk law. The concentration field at a given time ¢t = kdt and a point
(x1,22) = (i10x1, i205) is given by

1 S1 S92

c(x1, o, t) = NAA Z Z (i1 417,12 + i, k), (38)
2/

1=—s1 12 —892

where A; = 2s;0x;, [ = 1,2, are the lengths of the symmetrical intervals centered
at x; and n(iy, i, k) is the number of particles which at time step k lie at the grid
pOil’lt (il, ZQ)

The one-dimensional GRW algorithm describes the scattering of the n(i, k) particles
from (x;,tx) by

n(j, k) =on(j,j +vj, k) +én(j+v; —d, j. k) +én(j +v; +d, j, k),

where v; = );0t/dx are discrete displacements produced by the velocity field and
d describes the diffusive jumps. The quantities dn are Bernoulli random variables
and describe respectively, the number of particles which remain at the same grid
site after an advective displacement and the number of particles jumping to the left
and to the right of the advected position j + v;. The distribution of the particles at
the next time (k + 1)0t is given by

n(i, k+1 Zéan,

The average number of particles undergoing diffusive jumps and the average number
of particles remaining at the same node after the displacement v; are given by the
relations

1 —
Sl + 05 £ 4,5, 8) = 7 nj ),

on(j,j+vj, k) =(1—r)n(j,k),
where 0 < r < 1. The diffusion coefficient D is related to the grid steps by the

12



relation
(dox)?
20t

For two and three-dimensional cases, the same procedure is repeated for all space
directions.

D=r

Because the total number of particles N contained in the grid is conserved, the
GRW algorithm is stable. The condition » < 1, ensures that there is no numerical
diffusion. In [38] it was shown that for Gaussian diffusion the numerical solution
converges as O(dz?) +O(N~1/2), i.e. for large numbers of particles the convergence
order is O(dz?), the same as for the finite differences scheme.

The “reduced fluctuations” GRW algorithm is defined by

n/2 if nis even

5%(] + v — d,j, k) =
n/2] + 0 if n is odd
where n = n(j, k) —dn(j, j+v;, k), [n/2] is the integer part of n/2 and 6 is a variable
taking the values 0 and 1 with probability 1/2. This algorithm is appropriate for
large scale problems, for two reasons. Firstly, the diffusion front does not extend
beyond the limit concentration defined by one particle at a grid point, keeping a
physical significant shape (unlike in finite differences where a pure diffusion front
has a cubic shape of side ~ (2D#)1/2). Secondly, the “reduced fluctuations” algorithm
requires only a minimum number of calls of the random number generator.

Let us compare GRW with the classical PT scheme. PT approximates the solution
of (1) by (38), after having generated (sequentially) N particles’ trajectories and es-
timating (through a post-processing) the number of occurrences n of the N particles
in sampling volumes A;. PT uses N particles and T' random numbers to generate
a single particle trajectory. To do the same job, GRW needs a single call of the
uniformly distributed random numbers generator to move all n particles from at
the most as many points as the grid size L, over T' time steps. Hence, (GRW-CPU
time) / (PT-CPU time)=O(L/N). For instance, if N = 10** (Avogadro’s number)
and L = 10° grid points, a huge speed-up of computations by a factor of 10 is
achieved. A comparison with a PT code (diffusion over ten time steps of N parti-
cle starting at the center of a cubic grid) shows that while for the GRW algorithm
there were practically no limitations concerning the total number of particles and
the computation time was of about one second, PT simulations for N = 10° parti-
cles already required a computing time of about one hour and 256 processors on a
CRAY T3E parallel machine [38].

To compute the variance of particle displacements, s7, [ = 1,2, a more accurate
result is obtained if instead of the concentration (38) one uses the point density of
the number of particles n(iy, iz, k):

2
1 .
(02)? s” (kot) Zzl n(iy, o, k [ Zzl n(iy, is, k ] . (39)

7/1 77/2 i1 712
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Using (39), the effective coefficients are computed as

D (k6t) = s /(2k6t).

Let us consider N, —points uniformly distributed inside the initial plume, N/N <
particles at each initial point and let n(iy, i, k; ig1, t92) be the distribution of particles
at the time step k given by the GRW procedure for a diffusion process starting at
(101021, 192022). Writing the distribution for the extended plume as

n(i17i27k) = Z n(i17i27k;i017i02>7

101,702
the averages from (39) can be rewritten in the form
720571 7/17Z27 — Z N Zan 7’17227k 2017202) ) (40)
11,02 Xo 101,802 11,52

where « stands for i; and 77 respectively. It follows from (40) that the variance (39)
is an average over the trajectories of the diffusion process starting at given initial
positions and over the distribution of the initial positions.
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3 Numerical Investigations

This section contains the main results of the paper. We present a study to com-
pare how diffusive the numerical schemes presented in the preceding section are. As
already mentioned in the introduction we propose two tests

T1 A problem with an analytical solution: a two-dimensional Gauss bell (Sec. 3.1).
We vary the Péclet number (by changing the magnitude of water velocity and, or,
the diameter of the mesh) to see its influence on numerical diffusion.

T2 A realistic solute transport problem in a heterogeneous soil (Sec. 3.2). The hy-
draulic conductivity is stochastically generated (log-normal distributed). The wa-
ter flux is obtained by solving the flow equation. A mesh with diameter h = 0.5
and a time step 7 = 0.1 are used for the computations.

In the first test (T1), we propose a deterministic problem with a known analytical
solution. It can be elementarily shown that for a domain big enough, the half-slope
of the central second moment of the concentration gives the diffusion coefficient.
The difference between the numerically computed half-slope of the second moment
and the known diffusion coefficient are then due to numerical diffusion. In the sec-
ond test (T2), we conduct stochastic simulations. Now we do not have an analytical
solution anymore. Nevertheless, theoretical effective diffusion coefficients can be ob-
tained by homogenization or by stochastic upscaling methods (see e.g. [3]). On the
other hand, the half-slope of the second moment is still an approximation of this
effective coefficient [3,17,37]. Moreover, we are also estimating the effective diffusion
coefficient by a GRW algorithm, which is known to be free of numerical diffusion.
Again, the difference between the numerically computed half-slope of the second
moment for MHFEM, GFEM or FVM and the theoretical diffusion coefficient or
the one obtained by GRW gives the numerical diffusion.

3.1  Numerical Diffusion and Péclet Number

In this section we consider a deterministic problem with a known analytical solution.
The problem represents the idealized case of solute transport without sorption or
reaction in a heterogeneous soil. We quantify the numerical diffusion for the various
schemes. Additionally, we study the influence of the Péclet number on numerical dif-
fusion. Consequently, we solve the equation (1) with © = 1 and a constant water flux

Q= @ . The computational domain is [0, 10] x [0, 10]. The diffusion-dispersion
Qy
coefficient is given by D = D , with D constant. We consider adequate ini-

01
tial and Dirichlet boundary conditions such that equation (1) admits the analytical
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solution

(2 = pra = Qu(t+6))° + (Y = py — Qy(t £ 6))°
A7 (t + E)De i) o (@)

c(x,y,t) =

where €, jiz, 1, are constants. We vary the value of (), to investigate the dependence
L)@+ @} "
— Wi

L denoting the length of the computational domain. For this we compute at each
time step the first moments

of the numerical diffusion on the Péclet number defined by Pe =

my(t) = /]RQ xe(t, z, y)dedy = pg + va(t + €), (42)

my(t) = /]R2 ye(t, z, y)dedy = p, + vy (t + €) (43)

and the second moments
Mg () :/ z?c(t, z,y)dvdy = 2D(t + €) + m?. (44)
]R2

My (1) = /R2 yPe(t, @, y)dedy = 2D(t + €) +m.. (45)
As results from above, the half-slopes of the centered second moments give the
diffusion coefficients:

1 1
D, = §8t(mm —m2)=D and D, = iﬁt(myy —m?) = D.
The difference between the numerically computed half-slopes and D furnishes the
numerical diffusion. The integrals are always aproximated like (this holds also for

(T2))

/RQf(t,a:,y)d:vdy% S 0T,

TeTh

with fr denoting the value of f in the center of mass of T" and |T'| stands for the
area of T'.

We performed simulations with D = 0.01, p, = p, = 5, @, = 0,0.1,1,2, Q, = 0
and € = 0.1. Accordingly, we have global Péclet numbers of 0, 100, 1000 and 2000.

2 2
o1V

simulations on two meshes: a coarse one, with a mesh diameter h = 0.1 and a
fine one with the mesh diameter h = 0.05. The time step is taken 7 = 0.05 and
7 = 0.025 for the computations on the coarse and fine mesh, respectively. The local
Péclet number is for the first case 0, 1, 10, and 20, whereas for the second one 0,
0.5, 5, and 10. The results are presented in Fig. 2 — 7. The difference of D, and

To see the effect of the local Péclet number we also performed
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D, to D = 0.01 divided by D = 0.01 gives the relative numerical diffusion. We did
computations with the classical, new and upwind MHFEM schemes (see Sec. 2.2),
linear, quadratic and upwind GFEM schemes (see Sec. 2.3) and first, second and
third order FVM schemes (see Sec. 2.4). The numerical diffusion is very small for
low Péclet numbers and obviously increases for high Péclet numbers. It can also be
seen that the local Péclet number is more important than the global one, the results
on a finer grid showing a clear improvement of the numerical diffusion. Nevertheless,
the local Péclet number alone can not be used as a criterion for how diffusive the
scheme is: the results with ), = 1 on the coarse grid are much worse than the results
for (), = 2 on the fine grid, although the local Péclet numbers are identical.

The upwind schemes (MHFEM 2, partial or full upwind GFEM) should be applied
only for high local Péclet numbers. These methods are stabilizing by introducing
artificial diffusion [19] and this should be, if possible, avoided. We mention here that
even for ), = 0.1 the full upwind schemes show artificial diffusion (like 10 — 20%
but because of the scale of the plot this can not be seen in the pictures Fig. 2
or Fig. 4). The partial upwind GFEM scheme is constructed in such a way that
no artificial diffusion is introduced if the local Péclet number is smaller or equal
to one. Nevertheless, without applying any stabilization technique the solution be-
comes (uncontrolled) unphysical, at extreme the solution even blows up. The results
for the coarse grid and high local Péclet number are clearly showing anomalous high
numerical diffusion for all discretization schemes under consideration. This comport-
ment is due to an oscillating solution, i.e. the solution shows extremely high and/or
negative values. In this case the upwind schemes furnish much better results. The
results obtained with FVM are better than MHFEM or GFEM. We also mention
that the upwind MHFEM scheme (MHFEM 2) is less diffusive even than the partial
upwind GFEM scheme. Further, the new MHFEM scheme (MHFEM 1) is better
than the classical scheme (MHFEM 0). On the finer grid, for @, = 1 the schemes
without upwind are again better, i.e. the mesh is now fine enough. But for ), = 2 we
still have an oscillating solution even on the fine mesh and the upwind schemes are
better. If we would refine once more we will again have the schemes without upwind
in advantage! Consequently, when dealing with a convection-dominated-problem we
have two possibilities: we decrease the size of the discretization parameters (time
step and mesh size) till the solution shows no oscilliations or apply some stabiliza-
tion techniques. The first method can be very time costly, the second one may have
too much numerical diffusion. The art is normally to find a compromise of the two!

The higher order schemes in space (quadratic GFEM or second or third order FVM)
are showing a bit less numerical diffusion than the lower order ones on the same grid
(but the number of unknowns is much higher, hence higher computational time).
This is more obvious in time: BDF(2) is much less numerically diffusive than BE
(see Fig. 8 and Fig. 9). We also point out that the differences are much higher in
the flow direction (for D,,) than in the transverse one (for D,,). But the superiority
of the higher order schemes is clearly seen only for ’smooth’ problems like the one
n (T1), for real application problems as considered in (T2), Sec. 3.2 the differences
between the higher and lower order schemes are negligible (but not the differences
in the computational time!).
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Fig. 2. Numerical diffusion for (T1): MHFEM, backward Euler. Simulations done with
h =0.1 and 7 = 0.05.
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Fig. 3. Numerical diffusion for (T1): MHFEM, backward Euler. Simulations done with
h =0.05 and 7 = 0.025.
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3.2 Solute transport in heterogeneous soil

In this section we study how diffusive the numerical schemes under consideration are
for a realistic simulation of solute transport in heterogeneous soil. We consider here a
saturated soil, i. e. ©O(¢)) = Og and K(O) = Kg are constants. We set ©Og = 1 and we
generate a statistically normally distributed log-hydraulic conductivity as explained
below. The water flux is obtained by solving (2)—(3). Let © = [0,210] x [0, 85] be
the computational domain and 7" = 200 the final time. The diffusion-dispersion

10
coefficient is given again by D = D , with D = 0.01. The initial and the
01

boundary conditions for both pressure and concentration are given in Fig. 10. The
total solute mass is one. The physical units in this section are milligrams, meters
and days and are not written every time explicitly.

Initial conditions

0.04 if(z,y) € Q

(0,85) (210,85) Cr (xv y) =
0 otherwise
0 Boundary conditions
— 35 atx=0
(0,0) (210,0) 1#(3% Y, t) = )
0 atx =210

Q; = [40, 45] x [40, 45]

elsewhere
Q-n=0, Vec-n=0.

Fig. 10. Computational domain, boundary conditions, and initial conditions for (T2).

Heterogeneous aquifer systems are described by a statistically homogeneous nor-
mally distributed log-hydraulic conductivity U(x) = log(K(x)), x € IR?. The fluc-
tuations random field u(x) = U(x) — m, where m = E(U(x)) is the constant expec-
tation of U, is homogeneous in a wide sense (or second order homogeneous) with
mean zero and a correlation function which depends only on the difference vector
p = X1 —Xo, Le. E(u(x1)u(xz)) = C(x1,x2) = C(p). To generate homogeneous ran-
dom fields we used the “randomization method” [34]. The simplest variant of the
randomization method has the form of a superposition of N, random sine modes,

N,

T Z [¢; cos(2mAk;x) + n; sin(27wA\k;x)], (46)
=1

where (j, n;, 7 = 1,..., N, are independent Gaussian random variables of mean zero

and unit variance, and k; are independent random vectors. The generated random

field u(x) has the mean zero, variance o2, isotropic correlation described by the

function C(p) = o2/, where p = ||p|| (|| - || stands for the euclidian norm) and A

is the correlation length. Fig. 11 (a) shows a sample of the random field (46) and in
Fig. 11 (b) it is verified that the spatial correlation is in very good agreement with the
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ensemble exponential correlation considered in the numerical setup, indicating good
ergodic properties of the randomization method used in the present simulations.

For the simulations presented here we used Np = 6400 modes in (46) to generate
samples of log-hydraulic conductivity with E(Kg) = 15, 0> = 0.1 and A\ = 1.
This implies K, = E(Kg)e "/ = 14.268 (the geometrical mean gives the effective

g%ﬁfﬁglii%?f9 ~ 0.237. We

made 10 simulations with 10 different permeability realizations for each numerical

AE(Q:)

scheme. The global Péclet number is now defined as Pe = —————=. We have Pe =

conductivity, see e.g. [4]) and therefore F(Q,) ~ —

23.7. All the computations are done on a uniform grid with ~ = 0.5 and a time step
7 = 0.1. Fig. 12 shows the evolution of the solute plume at successive times.

The second centered moments of the concentration field were computed by
2
Sea = as(t) = m2(0) = [ etz y)dody — ([ ae(t.ay)dody) (47)
Q Q

Syy = Myy(t) — mi(t) :/QyQC(t, z,y)dzdy — (/Q ye(t, z, y)d:cdy)2 : (48)

Using the same relations (47) - (48), with m,(t), a = z,y, replaced by their ex-
pectation E(m,(t)) = E(Q.)t and E(m,(t)) = 0 respectively, we also computed
the second moments o, centered at the expected center of mass. The expectation
Yoo = E(0aq) (estimated by the arithmetic average over the ensemble of transport
simulations) gives the centered moments of the expected concentration. The latter
are related to the expectation S, = F(Saa) of the second moments of the actual
concentration by
Soa = Zaa — Raa,

where R, = E{[m, — F(m,)]?} is the variance of the center of mass [35]. For
transport in velocity fields with finite correlation lengths, R, decays to zero in the
long time limit [36,37] and the half-slopes of either S,, or X, are constant and
define the numerically upscaled diffusion coefficients DJu™*.

In our settings, the theoretical upscaled diffusion coefficients which describe the
long-time limit Gaussian process [35] are given by

b [DHQuoA 0 0.0337 0
0 D 0 0.01

with Q, = E(Q.) = 0.237 the averaged water flux in the z-direction (on the y-
direction we have @y = 0), 0% the variance and A the correlation length of the
log-hydraulic conductivity field.

Fig. 13 - 15 present the mean half-slope of the central moment of the ensemble av-
eraged concentration ¥, estimated by averaging over ensembles of 10 realizations,
for variants of the three methods investigated in this paper: MHFEM, GFEM, and
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FVM. Further, in Fig. 17 and Fig. 18, the new MHFEM scheme (MHFEM 1), the
linear GFEM scheme, and first-order FVM scheme (FV1) are compared with the
results for 256 GRW simulations, done for a first-order approximation of the veloc-
ity field corresponding to random fluctuations (46) of the log-hydraulic conductivity
field. The small variance of the log-hydraulic conductivity field of 0.1 considered in
simulations justify the use of the first order approximations [35]. Moreover, for the
small square source with edge of 5 correlation lengths, the memory effects induced
by the initial conditions are negligibly small [36,37] and X, estimates the “one-
particle dispersion” which characterizes, in the mean, the pre-asymptotic transport.
In these conditions, the reliable GRW estimates of X, can serve as reference terms
in these comparisons. Confidence intervals are estimated by the standard estima-
tions of the error of the mean, given by standard deviations divided by the square
root of the number of realizations. The comparison shows that, in spite of small
statistical ensembles (consisting of only 10 realizations), after about 100 days the
results for all the numerical schemes considered are in acceptable small ranges about
the reference GRW simulations. We point out, that the MHFEM, GFEM and FVM
schemes performed very similary with respect to numerical diffusion for test (T2)
(see Fig. 17 and Fig. 18). We just remark that again the upwind MHFEM scheme
was better than the upwind GFEM.

As long as no upwind is performed, all the schemes show low artificial diffusion.
But, also for all the schemes, the solution is oscillating (negative concentrations are
observed). Although the negative concentrations are small (like 107* at most) this
makes the solution unphysical. By performing upwind one clearly sees the numerical
diffusion (Fig. 13 and Fig. 14). A simple ’stabilization’ method is just to cut the
negative concentration and put zero instead. We did this for the MHFEM and the
results are obvious: the solution is now positive and the numerical diffusion remains
very low (see Fig. 16). Nevertheless, such a method is normally not acceptable
because one has no evidence of its asymptotic convergence. This underlines the
need for alternative stabilization techniques for such problems which are not based
on adding artificial diffusion.

The higher order schemes provide almost the same results as the lower order ones (see
Fig. 14 and Fig. 15). But if the lower order schemes (MHFEM, GFEM and FVM)
need like 6 to 8 hours for a realization on one processor, the quadratic GFEM needs
about 35 hours and the FV2 almost 70 hours. And this although all the schemes
are implemented in modern software packages and benefit of highly efficient linear
solvers! The same holds for the BDF(2) versus BE, no significant improvement can
be seen.

Finally, in Fig. 19 - 24 we plot the speed of the center of mass for the numerical
schemes under consideration. The speed is given by the slope of the first moment
of the concentration. On the z—direction the speed should be E(Q,) = 0.237 and
on the y—direction zero. All the schemes are performing very well in this respect.
Nevertheless, we remark that at small times (less than 20 days) MHFEM 0 and
MHFEM show relative high errors (see Fig. 19 and Fig. 20). Also the FVM schemes
produce errors at small times (see Fig. 23 and Fig. 24). Only by the upwind MHFEM
scheme and GFEM (see Fig. 21 and Fig. 22) the speed of the center of mass remains
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from the beginning in the confidence interval. At long times, the most accurate in
the z—direction was the MHFEM, whereas GFEM and FVM were better in the
y—direction. We also point out that again the new MHFEM scheme (MHFEM 1)

performed better as the classical one.

5.10E401
l 1 I 1 I 1 I 1
I simulation -+ _|
3.91E401 0.1exp(-p) — |
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2,73E-+01 O - 2
1,54E+01 - =
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| BastEw00
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Fig. 11. (a) Sample of the random field K = exp U(x) generated with the uniform sampling
randomization method. (b) Exponential correlation estimated by spatial averages of the
random field u(z) generated with the uniform samplingrandomization method.
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Fig. 12. Concentration profiles at 0, 50, 100 and 200 days for (T2).
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Fig. 13. Numerical diffusion for (T2) for MHFEM schemes.
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Fig. 14. Numerical diffusion for (T2) for GFEM schemes.
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Fig. 16. Numerical diffusion for (T2) for MHFEM schemes with and without regularization.
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Fig. 17. Comparison of the simulated longitudinal coefficients with GRW results; thick
lines represent ensemble averages and the thin lines are confidence intervals.
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represent ensemble averages and the thin lines are confidence intervals.
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Fig. 20. Velocity (y-component) of the center of mass for MHFEM schemes; thick lines
represent ensemble averages and the thin lines are confidence intervals.
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Fig. 21. Velocity (x-component) of the center of mass for GFEM schemes; thick lines
represent ensemble averages and the thin lines are confidence intervals.
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ensemble averages and the thin lines are confidence intervals.
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4 Conclusions

We considered a comparison of different numerical schemes for the simulation of
contaminant transport in heterogeneous porous media. The numerical methods un-
der consideration were Galerkin finite element (GFEM), mixed hybrid finite element
(MHFEM) and finite volume (FVM). The accuracy of higher order, different time
discretization methods and upwind schemes have been evaluated. We considered an
academic example (where the numerical diffusion can be quantified exactly) and a
realistic simulation of solute transport in heterogeneous soil. The results obtained
can be used for researchers to test their numerical schemes and stabilization tech-
niques. We summarize our findings by:

The numerical diffusion increases with the Péclet number for all discretization
schemes under consideration.

Higher order schemes (in time or in space) show lower numerical diffusion for
homogeneous problems. The cost for better accuracy is a larger computational
expense. For more realistic problems (i.e. heterogeneity in parameter distribution)
the differences between lower and higher order schemes are negligible but the
computational cost are much higher for higher order schemes.

Upwind schemes, on the one hand, increase the numerical stability of the transport
problem, on the other hand, they introduce additional numerical diffusion. Meth-
ods without any stabilization techniques show oscillating solutions if not solved on
very fine meshes and with very small time steps. Upwind schemes should only be
applied when absolutely necessary. It is worthwhile to investigate and implement
also other stabilization techniques.

When dealing with a convection-dominated-problem one has two possibilities to
obtain accurate solutions: (1) to decrease the size of the discretization parameters
(time step and mesh diameter) till the numerical oscilliations disappear or (2)
apply certain stabilization techniques. The first method can be very time costly;
the second one may have too much numerical diffusion. The compromise normally
is to find a balance of the two methods.

The local Péclet number is not always (or not alone) relevant for estimating nu-
merical diffusion. The results show that for the same local Péclet number but
on different meshes and different convective fluxes the schemes are also showing
different numerical diffusion (for the same type of problem).

All the discretization under consideration are very powerfull methods and they
performed very well in respect to numerical diffusion for (T2). We just mention
that the FVM schemes were the most accurate for (T1) on the coarse mesh but
on the fine mesh all lower order schemes without upwind gave almost the same
results. The new MHFEM seems to be better than the classical one. The upwind
MHFEM is less diffusive than even the partial upwind GFEM scheme. At small
time steps (less than 20 days) relative high errors are observed for the speed of the
center of mass for the MHFEM schemes without upwind. Also the FVM schemes
produce errors at small times. Only by the upwind MHFEM scheme and GFEM
the speed of the center of mass remains from the beginning in the confidence
interval.
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