On Newton's method for subanalytic equations

Authors

  • Ioannis K. Argyros Cameron University, Department of Mathematicsal Sciences, Lawton, USA
  • Santhosh George National Institute of Technology Karnataka, Department of Mathematical and Computational Sciences, India

DOI:

https://doi.org/10.33993/jnaat461-1132

Keywords:

Newton's methods, convergence ball, local-semilocal convergence, subanalytic functions
Abstract views: 323

Abstract

We present local and semilocal convergence results for Newton’s method in order to approximate solutions of subanalytic equations. The local convergence results are given under weaker conditions than in earlier studies such as [9], [10], [14], [15], [24], [25], [26], resulting to a larger convergence ball and a smaller ratio of convergence. In the semilocal convergence case contravariant conditions not used before are employed to show the convergence of Newton’s method. Numerical examples illustrating the advantages of our approach are also presented in this study.

Downloads

Download data is not yet available.

Author Biography

Ioannis K. Argyros, Cameron University, Department of Mathematicsal Sciences, Lawton, USA

Full tenured Professor of Mathematics.

References

S. Amat, S. Busquier, J.M. Gutierrez, Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157 (2003), 197-205, https://doi.org/10.1016/s0377-0427(03)00420-5 DOI: https://doi.org/10.1016/S0377-0427(03)00420-5

I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach spaces, J. Math. Anal. Appl., 298 (2004), 374-397, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008

I.K. Argyros, Computational theory of iterative methods. Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.

I.K. Argyros, Concerning the convergence of Newton’s method and quadratic majorants, J. Appl. Math. Comput., 29 (2009), 391-400, https://doi.org/10.1007/s12190-008-0140-6 DOI: https://doi.org/10.1007/s12190-008-0140-6

I.K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comput., 80 (2011), 327-343, https://doi.org/10.1090/s0025-5718-2010-02398-1 DOI: https://doi.org/10.1090/S0025-5718-2010-02398-1

I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, 28 (2012), 364-387, https://doi.org/10.1016/j.jco.2011.12.003 DOI: https://doi.org/10.1016/j.jco.2011.12.003

I.K. Argyros, Y.J. Cho, S. Hilout, Numerical methods for equations and its applications, CRC Press/Taylor and Francis Publ., New York, 2012. DOI: https://doi.org/10.1201/b12297

I.K. Argyros, S. Hilout, Computational methods in nonlinear analysis, World Scientific Publ. Comp., New Jersey, USA 2013. DOI: https://doi.org/10.1142/8475

E. Bierstone, P.D. Milman, Semianalytic and subanalytic sets, IHES. Publications mathematiques, 67 (1988), 5-42, https://doi.org/10.1007/bf02699126 DOI: https://doi.org/10.1007/BF02699126

J. Bolte, A. Daniilidis, A.S. Lewis, Tame mapping are semismooth, Math. Programming (series B), 117 (2009), 5-19, https://doi.org/10.1007/s10107-007-0166-9 DOI: https://doi.org/10.1007/s10107-007-0166-9

V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: The Halley method, Computing, 44 (1990), 169-184, https://doi.org/10.1007/bf02241866 DOI: https://doi.org/10.1007/BF02241866

V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing, 45 (1990), 355-367, https://doi.org/10.1007/bf02238803 DOI: https://doi.org/10.1007/BF02238803

C. Chun, P. Stanica, B. Neta, Third order family of methods in Banach spaces, Computers Math. Appl., 61 (2011), 1665-1675, https://doi.org/10.1016/j.camwa.2011.01.034 DOI: https://doi.org/10.1016/j.camwa.2011.01.034

F.H. Clarke, Optimization and Nonsmooth Analysis, Society for industrial and Applied Mathematics, 1990. DOI: https://doi.org/10.1137/1.9781611971309

J.P. Dedieu, Penalty functions in subanalytic optimization, Optimization, 26 (1992), 27- 32, https://doi.org/10.1080/02331939208843840 DOI: https://doi.org/10.1080/02331939208843840

J.E. Dennis Jr, R.B. Schnabel, Numerical methods of unconstrained optimization and nonlinear equations, Pretice-Hall, Englewood Cliffs., 1982.

P. Deuflhard, Newton methods for nonlinear problems: Affine invariance and Adaptive Algorithms, Berlin: Springer-Verlag, 2004.

J.M. Gutierrez, M.A. Hernandez, Recurrence relations for the super-Hal ley method, Computers Math. Appl., 36 (1998), 1-8, https://doi.org/10.1016/s0898-1221(98)00168-0 DOI: https://doi.org/10.1016/S0898-1221(98)00168-0

J.M. Gutierrez, M.A. Hernandez, Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math., 82 (1997), 171-183, https://doi.org/10.1016/s0377-0427(97)00076-9 DOI: https://doi.org/10.1016/S0377-0427(97)00076-9

M.A. Hernandez, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, Journal of Computational and Applied Mathematics, 126 (2000), 131-143, https://doi.org/10.1016/s0377-0427(99)00347-7 DOI: https://doi.org/10.1016/S0377-0427(99)00347-7

M.A. Hernandez, Chebyshev’s approximation algorithms and applications, Computers Math. Applic., 41 (2001), 433-455, https://doi.org/10.1016/s0898-1221(00)00286-8 DOI: https://doi.org/10.1016/S0898-1221(00)00286-8

L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford,1982.

S. Lojasiewicz, Ensembles semi-analytiques, IHES Mimeographed notes, 1964.

R. Mifflin, Semi-smooth and semi-convex functions in constrained optimization, SIAM J. Control and Optimization, 15 (1977), 959-972, https://doi.org/10.1137/0315061 DOI: https://doi.org/10.1137/0315061

J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic press, New York, 1970.

L. Qi, J. Sun, A non-smooth version of Newton’s method, Mathematical Programming, 58 (1993), 353-367, https://doi.org/10.1007/bf01581275 DOI: https://doi.org/10.1007/BF01581275

R.T. Rockafellar, Favorable classes of Lipschitz-continuous functions in subgradient optimization, in E. Nurminski ed., Nondifferentiable Optimization (Pergamon Press, New York, 1982), 125-143.

L. Van Den Dries, C. Miller, Geometric categories and 0-minimal structures, Duke. Math. J., 84 (1996), 497-540, https://doi.org/10.1215/s0012-7094-96-08416-1 DOI: https://doi.org/10.1215/S0012-7094-96-08416-1

Downloads

Published

2017-09-21

How to Cite

Argyros, I. K., & George, S. (2017). On Newton’s method for subanalytic equations. J. Numer. Anal. Approx. Theory, 46(1), 25–37. https://doi.org/10.33993/jnaat461-1132

Issue

Section

Articles