Theorem of Motzkin's alternative for nonhomogeneous complex linear equations and inequalities

Authors

  • Dorel I. Duca "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 228

Abstract

Not available.

Downloads

Download data is not yet available.

References

Abrams, Robert A.; Ben-Israel, Adi Nonlinear programming in complex space: necessary conditions. SIAM J. Control 9 (1971), pp. 606-620, MR0378816, https://doi.org/10.1137/0309043

Ben-Israel, Adi Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory. J. Math. Anal. Appl. 27 1969, pp. 367-389, MR0242865, https://doi.org/10.1016/0022-247x(69)90054-7

Ben-Israel, A. Erratum: "Theorems of the alternative for complex linear inequalities". Israel J. Math. 7 1969 292a, MR0260426, https://doi.org/10.1007/bf02771659

Abrams, Robert A.; Ben-Israel, Adi On the key theorems of Tucker and Levinson for complex linear inequalities. J. Math. Anal. Appl. 29 1970, pp. 640-646, MR0252419, https://doi.org/10.1016/0022-247x(70)90072-7

Craven, B. D.; Mond, B. A Fritz John theorem in complex space. Bull. Austral. Math. Soc. 8 (1973), pp. 215-220, MR0319020, https://doi.org/10.1017/s0004972700042465

Craven, B. D.; Mond, B. Real and complex Fritz John theorems. J. Math. Anal. Appl. 44 (1973), pp. 773-778, MR0359774, https://doi.org/10.1016/0022-247x(73)90016-4

Craven, B. D.; Mond, B. On duality in complex linear programming. Collection of articles dedicated to the memory of Hanna Neumann, II. J. Austral. Math. Soc. 16 (1973), pp. 172-175, MR0337309, https://doi.org/10.1017/s144678870001418x

Dragomirescu, M. şi Maliţa, M., Programare neliniară, Ed. ştiinţifică, Bucureşti, 1972.

Duca, Dorel I. On vectorial programming problem in complex space. Studia Univ. Babeş-Bolyai Math. 24 (1979), no. 1, pp. 51-56, MR0574563.

Duca, Dorel I. Necessary optimality criteria in nonlinear programming in complex space with differentiability. Anal. Numér. Théor. Approx. 9 (1980), no. 2, pp. 163-179 (1981), MR0651772.

Duca, D.I., Mathematical programming in complex space, Doctoral thesis, Unviersity of Cluj-Napoca, Cluj-Napoca, 1981.

Duca, Dorel I. Efficiency criteria in vectorial programming in complex space without convexity. Cahiers Centre Études Rech. Opér. 26 (1984), no. 3-4, pp. 217-226, MR0778105.

Duca, Dorel I. On the Farkas type theorem for complex linear equations and inequalities. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1987), pp. 143-148, Preprint, 87-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1987, MR0993526.

Duca, Dorel I. On theorems of the alternative for nonhomogeneous complex linear equations and inequalities. Seminar on Optimization Theory, 29-40, Preprint, 87-8, Univ. "Babeş-Bolyai", Cluj-Napoca, 1987, MR0977089.

Farkas, J., Über die Theorie der einfachen Ungleichungen, J. Reine Angew. Math., 124 (1902), pp. 1-24.

Gordan, P.; Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten. (German) Math. Ann. 6 (1873), no. 1, pp. 23-28, MR1509805, https://doi.org/10.1007/bf01442864

Gulati, T. R. A Fritz John type sufficient optimality theorem in complex space. Bull. Austral. Math. Soc. 11 (1974), pp. 219-224, MR0368778, https://doi.org/10.1017/s0004972700043811

Kaul, R. N. On linear inequalities in complex space. Amer. Math. Monthly 77 1970, pp. 956-960, MR0268209.

Levinson, Norman Linear programming in complex space. J. Math. Anal. Appl. 14 1966, pp. 44-62, MR0225569, https://doi.org/10.1016/0022-247x(66)90061-8

Mangasarian, Olvi L. Nonlinear programming. McGraw-Hill Book Co., New York-London-Sydney 1969 xiii+220 pp., MR0252038.

Mond, Bertram An extension of the transposition theorems of Farkas and Eisenberg. J. Math. Anal. Appl. 32 1970, pp. 559-566, MR0269315, https://doi.org/10.1016/0022-247x(70)90277-5

Mond, Bertram; Hanson, Morgan A. A complex transposition theorem with applications to complex programming. Linear Algebra and Appl. 2 1969, pp. 49-56, MR0243818, https://doi.org/10.1016/0024-3795(69)90006-8

Mond, Bertram; Hanson, Morgan A. Some generalizations and applications of a complex transposition theorem. Linear Algebra and Appl. 2 1969, pp. 401-411, MR0253740, https://doi.org/10.1016/0024-3795(69)90013-5

Motzkin, T.S., Beiträge zur Theorie der linearen Ungleichiben, Inaugural Dissertation, Basel 1933; Jerusalem, Azriel, 1936 (English translation: U.S. Air Force-Proiect Rand, Report T-22, 1952).

Stancu-Minasian, I.M. and Duca, D.I., Multiple objective linear fractional optimization in complex space (to appear).

Downloads

Published

1987-08-01

Issue

Section

Articles

How to Cite

Duca, D. I. (1987). Theorem of Motzkin’s alternative for nonhomogeneous complex linear equations and inequalities. Anal. Numér. Théor. Approx., 16(2), 117-126. https://ictp.acad.ro/jnaat/journal/article/view/1987-vol16-no2-art4