On approximating the eigenvalues and eigenvectors of linear continuous operators
Abstract
We consider the computing of an eigenpair (an eigenvector \(v=(v^{(i)})_{i=1,n}\) and an eigenvalue \(\lambda\)) of a matrix \(A\in\mathbb{R}^{n\times n}\), by considering a supplementary condition (we call it norming function for the eigenvector), represented by a polynomial of degree 2. A usual choice is
\begin{equation}
G(v):={\textstyle\frac12} \sum_{i=1}^n( v^{(i)})^2-1=0.
\end{equation}
We propose here a new choice:
\begin{equation}
G(v):={\textstyle\frac1{2n}} \sum_{i=1}^n( v^{(i)})^2-1=0,
\end{equation}
which has the advantage that leads to a smaller nonlinearity.
Indeed, for the \(n+1\)-dimensional nonlinear system (a polynomial equation of degree 2) we obtain:
\[
F\left( x\right) :={{Av-\lambda v} \choose {G(v)-1}}
=0,
\]
and our proposed choice leads to a second derivative of \(F\) that has norm 2 (compared to \(n\), for the usual choice).
We consider this problem in a general setting, of a linear continuous operator \(A:V\rightarrow V\), \(V\) Banach space, which leads to a polynomial equation of degree two.
We study the semilocal convergence of an iterative method of Schultz type for this problem; this method has the advantage that does not require the solving of a linear system at each iteration step:
\begin{align*}
x_{k+1} =&x_k-\Gamma_kF\left( x_k\right) \\
\Gamma_{k+1} =&\Gamma_k\left( 2I-F^{\prime }\left( x_{k+1}\right) \Gamma_k\right) , \qquad k=0,1,\ldots,
\end{align*}
where \(x_0\in X\), \(\Gamma_0\in \mathcal{L}\left( X\right)\), and \(I\) is the identity operator of \(\mathcal{L}\left( X\right)\).
We obtain semilocal convergence conditions which show that the method has r-convergence order 2.
Downloads
References
M. P. Anselone and B. L. Rall, The solution of characteristic value-vector problems by Newton method, Numer. Math. 11 (1968), pp. 38-45, https://doi.org/10.1007/bf02165469
E. Cătinaş and I. Păvăloiu, On the Chebyshev method for approximating the eigenvalues of linear operators, Rev. Anal. Numer Theorie Approximation 25, 1-2 (1996), pp. 43-56.
P. G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Mason, Paris-Milan-Barcelone-Mexico, 1990.
F. Chatelin, Valeurs propres de matrices, Mason, Paris-Milan-Barcelone-Mexico, 1988.
L. Collatz, Functionalanalysis und numerisch Mathematik, Berlin-Göttingen-Heidleberg, Springer Verla, 1964.
A. Diaconu, On the convergence of an iterative proceeding of Chebyshev type, Rev. Anal. Numér. Théorie Approximation 24, 1-2 (1995), pp. 91-102.
A. Diaconu and I. Păvăloiu, Sur quelques méthodes itératives pour la résolution des équations opérationnelles, Rev. Anal. Numér. Theorie Approximation 1, 1 (1972), pp. 45-61.
V. S. Kartîşov and F. L. Iuhno, O nekatorîh Modifikaţiah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci, J. Vîcisl. matmrn. i matem. fiz.33, 9 (1973), pp.1403-1409.
L Lazăr, On a Newton-type method, Rev. Anal. Numér. Theorie Approximation 23, 2 (1994), pp.167-174.
I. Păvăloiu, Obsevations concerning some approximation methods for the solutions of operator equations, Rev. Anal. Numér. Thér¡ie Approximation 23, 2 (1994), pp. 185-196.
I. Păvăloiu, Sur les procédes iteratifs à un ordre élevé de convergence, Mathematica (Cluj)12 (35), 2 (1970), pp. 309-324.
A. R. Tapia and L. D. Whitley, The projected Newton method has order 1+√2 for the symmetric eigenvalue problem, SIAM J. Numer. Anal. 25, 6 (1988), pp. 1376-1382, https://doi.org/10.1137/0725079
F. J. Traub, Iterative methods for the solution of equations, Frentice-Hall Inc., Englowood Cliffs, N.J., 1964.
S. Ul'm, On the iterative method with simultaneous approximation of the inverse of the operator, Izv. Acad,. Nauk. Estonskoi S.S.R. 16, 4 (1967), pp. 403-417.
T. Yamamoto, Error bounds for computed eigenvalues and eigenvectors, Numer. Math. 34 (1980), pp. 189-199, https://doi.org/10.1007/bf01396059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.