On the monotone convergence of an Euler-Chebysheff-type method in partially ordered topological spaces
Abstract
Not available.Downloads
References
I.K.Argyos, and F. Szidarovszky, On the monotone convergence of general Newton-like metohods,Bull. Austral. Math. Soc., 45, (1992), pp. 489-502, https://doi.org/10.1017/s0004972700030392
I. K. Argyros, and F. Szidarovszky,The Theory and Applications of lteration Methods, C.R.C. Press, Inc. Boca Raton, Florida, U.S.A, (1993).
I. K. Argyros, On the convergence of Chebysheff-Halley-type method under Newton-Kantorovich hypotheses, Appl. Math. Letter, 6, 5, (1993), pp. 71-74, https://doi.org/10.1016/0893-9659(93)90104-u
L .V. Kantorovich, The method of successive approximation for functional equotions, Acta Math., 71 (1939), pp. 63-97, https://doi.org/10.1007/bf02547750
M. A. Mertecova, An analog of the process of tangent hyperbolas for general functional equations (in Russian), Dokl. Akad. Nauk SSSR, 88 (1953), pp. 611-614.
M. T. Necepurenko, On Chebysheff's method for functional equations (in Russian), Usephi Mat. Nauk., 9 (1954). pp.163-170.
F. A. Potra, on an iterative algorithm of order 1.839 .., for solving nonlinear operator equations, Numer. Funct. Anal. Optimiz.,7 (/), (1934-1985), pp.75-106, https://doi.org/10.1080/01630568508816182
S. Ul'm, Iteration methods with divided diferences of the second order (in Russian), Dokl. Akad. Nauk SSSR, 158 (1964), pp. 55-58, Soviet Math. Dokl. 5, pp.1187-1190.
J.A. Vandergraft, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967), pp. 406 – 432, https://doi.org/10.1137/0704037
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.