Chebyshev-like methods and quadratic equations
Abstract
Not available.
Downloads
References
G. Alefeld, On the convergence of Halley's method, Amer. Math. Monthly, 88 (1981), 530-536, https://doi.org/10.1080/00029890.1981.11995308
M. Altman, Concerning the method of tangent hyperbolas for operator equations, Bull. Acad. Pol. Sci., Serie Sci. Math., Ast. et Phys., 9(1961), 633-637.
I.K. Argyros, Quadratic equations and aplications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc., 38 (1988), 275-292, https://doi.org/10.1017/s0004972700009953
I.K. Argyros and D. Chen, Results on the Chebyshev method in Banach spaces, Proyecciones, 12, 2 (1993), 119-128, https://doi.org/10.22199/s07160917.1993.0002.00002
V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: the Chebyshev method, Computing, 45 (1990), 355-367, https://doi.org/10.1007/bf02238803
W. Gander, On Halley's iteration method, Amer. Math. Monthly, 92 (1985), 131-134, https://doi.org/10.1080/00029890.1985.11971554
J.M. Gutiérrez and M.A. Hernández, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc., 55 (1997), 113-130, https://doi.org/10.1017/s0004972700030586
L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, 1982.
A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, 1963.
F.A. Potra and V. Ptak, Nondiscrete Induction and Iterative Processes, Pitman Pub., 1983.
L.B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger Publishing Company, Inc., 1979.
W.C. Rheinboldt. A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5 (1968), 42-63, https://doi.org/10.1137/0705003
T. Yamamoto, On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math. 21 (1988), 75-86, https://doi.org/10.1016/0377-0427(88)90389-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.