On some remarkable positive polynomial operators of approximation

Authors

  • D. D. Stancu "Babeş Bolyai" University, Cluj-Napoca, Romania
  • A. Vernescu Bucureşti, Romania
Abstract views: 192

Abstract

Not available.

Downloads

Download data is not yet available.

References

U. Abel, On the asymptotic approximation with operators of Bleimann, Butzer and Hahn, Indag. Math. (N.S.), 7(1996), 1-9, https://doi.org/10.1016/0019-3577(96)88653-8

U. Abel and D.M. Ivan, Some identities for the operator of Bleimann, Butzer and Hahn, Calcolo (to appear), https://doi.org/10.1007/s100920050028

F. Altomare and M. Campiti, Korovkin-Type Approximation and Its Applications, de Gruyter, Berlin, New York, 1994https://doi.org/10.1515/9783110884586,

O. Agratini, On the monotonicity of a sequence of Stancu-Bernstein type operators, Studia Univ. Babeş-Bolyai, Cluj, 41 (1996), 17-23.

O. Agratini, A class of Bleimann, Butzer and Hahn type operators, analele Univ. Timişoara, 34(1996), 173-180.

H. Berens and R.DeVore, A characterization of Bernstein polynomials, Approximation Theory III (Proc. Conf. Univ. Texas, Austin, Tex., 1980), 213-219, Academic Press, New York, 1980.

N. Bernstein, Démonstration du théoréme de Weierstrass fondée sur le calcul de probabilitiés, Commun. Soc. Math. Kharkov, 13 (1912), 1-2.

G. Bleimann, P.L. Butzer and L. Hahn, A Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262, https://doi.org/10.1016/1385-7258(80)90027-x

E. Borel, Leçons sur les Fonctions de Variables Réelles, Gauthier-Villars, Paris, 1905.

G. Călugăreanu, On operators of S.N. Bernstein. Spectra of operators, Gazeta Matem. (A), 71 (1966), 448-451.

E.W. Cheney, Introduction to Approximation Theory, Chelsea Publ. Comp., New Yok, 1982.

H.H. Gonska and H. Meier, Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo, 21 (1984), 317-335, https://doi.org/10.1007/bf02576170

H.H. Gonska and R.K. Kovacheva, The second order modulus revisited: remarks, applications, problems, Conferenze dei Seminario di Matematica Univv. Bari, 257 (1994), 1-32.

G.G. Lorentz, Bernstein Polynomials, Univ. Toronto Press, 1953.

A. Mcd. Mercer, A Bernstein-type operator approximating continuous functions on the half-line, Bull. Calcutta Math. Soc. 31 (1989), 133-137.

T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica, 10 (1935), 49-54.

O. Shisha and B. Mond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci., USA, (1968), 1196-1200.

D.D. Stancu, The remainder of certain linear approximation formular in two variables, J. SIAM Numer. Anal., Ser. B,1 (1964), 137-163.

D.D. Stancu, On a generalization of the Bernstein polynomials, Studia Univ. Babeş-Bolyai, Cluj, 14 (1969), 31-45.

D.D. sTancu, Use of linear interpolation for constructing a class of Bernstein polynomials, Studii Cercet. Matem. 28 (1976), 369-379.

Downloads

Published

1999-02-01

How to Cite

Stancu, D. D., & Vernescu, A. (1999). On some remarkable positive polynomial operators of approximation. Rev. Anal. Numér. Théor. Approx., 28(1), 85–95. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art8

Issue

Section

Articles