On some remarkable positive polynomial operators of approximation
Abstract
Not available.Downloads
References
U. Abel, On the asymptotic approximation with operators of Bleimann, Butzer and Hahn, Indag. Math. (N.S.), 7(1996), 1-9, https://doi.org/10.1016/0019-3577(96)88653-8
U. Abel and D.M. Ivan, Some identities for the operator of Bleimann, Butzer and Hahn, Calcolo (to appear), https://doi.org/10.1007/s100920050028
F. Altomare and M. Campiti, Korovkin-Type Approximation and Its Applications, de Gruyter, Berlin, New York, 1994https://doi.org/10.1515/9783110884586,
O. Agratini, On the monotonicity of a sequence of Stancu-Bernstein type operators, Studia Univ. Babeş-Bolyai, Cluj, 41 (1996), 17-23.
O. Agratini, A class of Bleimann, Butzer and Hahn type operators, analele Univ. Timişoara, 34(1996), 173-180.
H. Berens and R.DeVore, A characterization of Bernstein polynomials, Approximation Theory III (Proc. Conf. Univ. Texas, Austin, Tex., 1980), 213-219, Academic Press, New York, 1980.
N. Bernstein, Démonstration du théoréme de Weierstrass fondée sur le calcul de probabilitiés, Commun. Soc. Math. Kharkov, 13 (1912), 1-2.
G. Bleimann, P.L. Butzer and L. Hahn, A Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262, https://doi.org/10.1016/1385-7258(80)90027-x
E. Borel, Leçons sur les Fonctions de Variables Réelles, Gauthier-Villars, Paris, 1905.
G. Călugăreanu, On operators of S.N. Bernstein. Spectra of operators, Gazeta Matem. (A), 71 (1966), 448-451.
E.W. Cheney, Introduction to Approximation Theory, Chelsea Publ. Comp., New Yok, 1982.
H.H. Gonska and H. Meier, Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo, 21 (1984), 317-335, https://doi.org/10.1007/bf02576170
H.H. Gonska and R.K. Kovacheva, The second order modulus revisited: remarks, applications, problems, Conferenze dei Seminario di Matematica Univv. Bari, 257 (1994), 1-32.
G.G. Lorentz, Bernstein Polynomials, Univ. Toronto Press, 1953.
A. Mcd. Mercer, A Bernstein-type operator approximating continuous functions on the half-line, Bull. Calcutta Math. Soc. 31 (1989), 133-137.
T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica, 10 (1935), 49-54.
O. Shisha and B. Mond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci., USA, (1968), 1196-1200.
D.D. Stancu, The remainder of certain linear approximation formular in two variables, J. SIAM Numer. Anal., Ser. B,1 (1964), 137-163.
D.D. Stancu, On a generalization of the Bernstein polynomials, Studia Univ. Babeş-Bolyai, Cluj, 14 (1969), 31-45.
D.D. sTancu, Use of linear interpolation for constructing a class of Bernstein polynomials, Studii Cercet. Matem. 28 (1976), 369-379.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.