On some interpolatory iterative methods for the second degree polynomial operators (II)
Abstract
Not available.Downloads
References
M. P. Anselone and L. B. Rall, The Soltuion of Characteristic Value-Vector Problems by Newton Method, Numer. Math. 11(1968). pp. 38-45, https://doi.org/10.1007/bf02165469
E. Cătinaş and l. Păvăloiu. On the Chebyshev, Method.for Approximating the Eigenvalues of Linear Opeators, Rev. Anal. Numér. Théor. Approx., 25,1-2 (1996), pp.43-56.
E. Cătinaş and l. Păvăloiu, Onau Chebyshev-type method for Approximating the Soltuions of Polynomial Operator Equations of Degree 2. Proceedings of the International Conference on Approximation and Optimization, Cluj-Napoca. July 29-August 1, 1996. Vol. l, pp.219-226.
E. Cătinaş and l. Păvăloiu, On Approximating the Eigenvalue and Eigenvectors of Linear Continuous Operators, Rev. Anal. Numér. Théor. Approx., 26, 1-2 (1997), pp.19-27.
E. Cătinaş and l. Păvăloiu, On some interpolatory Iterative Methods for the Second Degree Polynomial Operators (I), Rev. Anal. Numér. Théor. Approx., to appear.
F. Chatelin, Valeurs propres de matrices. Mason, Paris, 1988.
L Collatz. Functionalanalysis und Numerische Mathematik. Springer-Verlag, Berlin, 1964, https://doi.org/10.1007/978-3-642-53372-3
J. J. Dongarra, C, B. Molrr and J. H. Wilkinson, Improving the Accuracy of the Computed Eigenvalues and Eigenvectors. SIAM J .Numer. anal., 20, I (1983), pp.23-45, https://doi.org/10.1137/0720002
S. M. Grzegórski, On the Scaled Newton Method for the Symmetric Eigenvalue Problem. Computing, 45 (1990), pp.277-282, https://doi.org/10.1007/bf02250639
V. S, Kartîşov and L. Iuhno, O nekotorîh Modifikatiah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci. J. Vîcisl. matem. i matem. fiz.,33 9 (1973), pp. 1403-1409 (in Russìan).
M. L. Krasnov, lntegral Equations, Theoretical Introduction, Nauka Moskow, 1975 (in russian).
J. M. Ortega and W. C Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press. New York. 1970
C. Peters and J H. Wilkison. Inverse Iteration, III-Conditioned Equations and Newton's Method, SIAM Review.21. 3 (1979), pp.339-360, https://doi.org/10.1137/1021052
M. C. Santos. A Note on the Newton Iteration for the Algebraic Eigenvalue Problem, SIAM J. Matrix Anal. Appl., 9 4 (1988), pp.561-569, https://doi.org/10.1137/0609046
R. A. Tapia und L. D. Whitley. The Projected Newton Method has Order 1+√2 for the Symmetric Eigenvalue Problem, SIAM J. Numer. Anal. 25,6 (1988), pp.1376-1382, https://doi.org/10.1137/0725079.
S. Ul',, On the Iterative Method with Simultaneous Approximation of the Inverse of the Operator, Izv. Acad. Nauk. Estonskoi S.S.R., 16 4 (1967), pp. 40-411.
K. Wu. Y. Saad and A. Stathopoulos, Inexact Newton Preconditioning Techniques for Eigenvalue Problems, Lawrence Berkeley National Laboratory report number 41382 and Minnesota Supercomputing Institute report number UMSI 98-10, 1998.
T. Yamamoto, Error Bounds for Computed Eigenvalues and Eigenvectors, Numer. Math., 34 (1980), pp.189-199, https://doi.org/10.1007/bf01396059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.