Direct and indirect approximations to positive solution for a nonlinear reaction-diffusion problem. I. Direct (variational)

Authors

  • Călin-Ioan Gheorghiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Damian Trif “Babes-Bolyai” University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat311-709

Keywords:

nonlinear reaction-diffusion, positive solution, conserved integral, bifurcation, variational formulation, Lagrange multiplier, finite elements method
Abstract views: 335

Abstract

We consider a nonlinear, second-order, two-point boundary value problem that models some reaction-diffusion precesses. When the reaction term has a particular form, \(f(u)=u^{3}\), the problem has a unique positive solution that satisfies a conserved integral condition. We study the bifurcation of this solution with respect to the length of the interval and it turns out that solution bifurcates from infinity. In the first part, we obtain the numerical approximation to the positive solution by direct variational methods, while in the second part we consider indirect numerical methods. In order to obtain directly accurate numerical approximations to this positive solution, we characterize it by a variational problem involving a conditional extremum. Then we carry out some numerical experiments by usual finite elements method.

Downloads

Download data is not yet available.

References

Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, pp. 349-381, 1973, https://doi.org/10.1016/0022-1236(73)90051-7 DOI: https://doi.org/10.1016/0022-1236(73)90051-7

Aronson, D. G. and Weinberger, H. F., Nonlinear diffusion in population genetics, combustion and nerve pulse propagation, Lecture Notes in Math., 446, Springer-Verlag, 1975. DOI: https://doi.org/10.1007/BFb0070595

Crandal, M. G. and Rabinowitz, P. H., Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19, pp. 1083-1102, 1970, https://www.jstor.org/stable/24901657

Crandal, M. G. and Rabinowitz, P. H., Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rat. Mech. Anal., 52, pp. 161-180, 1973, https://doi.org/10.1007/BF00282325 DOI: https://doi.org/10.1007/BF00282325

Elsgolts, L., Differential Equations and the Calculus of Variations, Mir Publishers, Moscow, 1980.

Gheorghiu, C. I., Solution to problem 97-8 by Ph. Korman, SIAM Review, 39, 1997, SIAM Review, 40, no. 2, pp. 382-385, 1998.

Gheorghiu, C. I. and Trif, D., On the bifurcation and variational approximation of the positive solution of a nonlinear reaction-diffusion problem, Studia UBB, Mathematica, XLV, pp. 29-37, 2000.

Grindrod, P., The Theory and Applications of Reaction-Diffusion Equations; Patern and Waves, Second Edition, Clarendon Press, Oxford, 1996.

Keller, H. B. and Cohen, D. S., Some positone problems suggested by nonlinear heat generation, J. Math. Mech., 16, pp. 1361-1376, 1967, https://core.ac.uk/download/pdf/286365216.pdf DOI: https://doi.org/10.1512/iumj.1967.16.16087

Korman, Ph., Average temperature in a reaction-diffusion process, Problem 97-8, SIAM Review, 39, pp.318, 1997.

Laetsch, Th., The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20, pp. 1-13, 1970. DOI: https://doi.org/10.1512/iumj.1971.20.20001

Matkowsky, B. J., A simple nonlinear dynamic stability problem, Bull. Amer. Math. Soc., 76, pp. 620-625, 1970, https://doi.org/10.1090/S0002-9904-1970-12461-2 DOI: https://doi.org/10.1090/S0002-9904-1970-12461-2

Moore, R. A. and Nehari, Z., Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93, pp. 30-52, 1959, https://doi.org/10.2307/1993421 DOI: https://doi.org/10.1090/S0002-9947-1959-0111897-8

Sattinger, D. H., Topics in Stability and Bifurcation Theory, Springer-Verlag, 1973. DOI: https://doi.org/10.1007/BFb0060079

Sattinger, D. H., Stability of bifurcating solutions by Leray-Schauder degree, Arch. Rat. Mech. Anal., 43, pp. 155-165, 1970, https://doi.org/10.1007/BF00252776 DOI: https://doi.org/10.1007/BF00252776

Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21, pp. 979-1000, 1972, https://www.jstor.org/stable/24890429 DOI: https://doi.org/10.1512/iumj.1972.21.21079

Schwind, W. J., Ji, J. and Koditschek, D. E., A physically motivated further note on the mean value theorem for integrals, Amer. Math. Monthly, 126, pp. 559-564, 1999, https://doi.org/10.1080/00029890.1999.12005083 DOI: https://doi.org/10.1080/00029890.1999.12005083

Simpson, B. R. and Cohen, D. S., Positive solutions of nonlinear elliptic eigenvalue problems, J. Math. Mech., 19, pp. 895-910, 1970, https://www.jstor.org/stable/24901742

Turner, R. E. I., Nonlinear eigenvalue problems with nonlocal operators, Comm. Pure Appl. Math., 23, pp. 963-972, 1970, https://doi.org/10.1002/cpa.3160230607 DOI: https://doi.org/10.1002/cpa.3160230607

Wollkind, D. J., Monoranjan, V. S. and Zhang, L., Weakly nonlinear stability analysis of prototype reaction-diffusion model equations, SIAM Review, 36, no. 2, pp. 176-214, 1994, https://www.jstor.org/stable/2132460 DOI: https://doi.org/10.1137/1036052

Downloads

Published

2002-02-01

Issue

Section

Articles

How to Cite

Gheorghiu, C.-I., & Trif, D. (2002). Direct and indirect approximations to positive solution for a nonlinear reaction-diffusion problem. I. Direct (variational). Rev. Anal. Numér. Théor. Approx., 31(1), 61-69. https://doi.org/10.33993/jnaat311-709