About a general property for a class of linear positive operators and applications
DOI:
https://doi.org/10.33993/jnaat342-804Keywords:
linear positive operators, Bernstein operators, Durrmeyer operators, Kantorovich operators, Bleimann, Butzer and Hahn operatorsAbstract
In this paper we demonstrate a general property for a class of linear positive operators. By particularization, we obtain the convergence and the evaluation for the rate of convergence in term of the first modulus of smoothness for the Bernstein operators, Durrmeyer operators, Kantorovich operators and Bleimann, Butzer and Hahn operators.Downloads
References
Abel, U., Ivan, M., Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences, Calcolo, 36, pp. 143-160, 1999, https://doi.org/10.1007/s100920050028 DOI: https://doi.org/10.1007/s100920050028
Abel, U., Ivan, M., Best constant for a Bleimann, Butzer and Hahn moment estimation, East J. Approx., 6, no. 3, pp. 349-355, 2000.
Abel, U., Ivan, M., Durrmeyer variants of the Bleimann, Butzer and Hahn operators, The 5th Romanian-German Seminar on Approximation Theory and its Applications, Sibiu, Romania, 2002, pp. 1-8.
Agratini, O., Aproximare prin operatori liniari, Presa Univ. Clujeană, Cluj-Napoca, Romania, 2000 (Romanian).
Bleimann, G., Butzer, P. L., Hahn, L., A Bernstein type operator approximating continuous functions on the semi-axis, Indag. Math., 42, pp. 255-262, 1980, https://doi.org/10.1016/1385-7258(80)90027-x DOI: https://doi.org/10.1016/1385-7258(80)90027-X
Derriennic, M. M., Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes des Bernstein modifiès, J. Approx. Theory, 31, pp. 325-343, 1981, https://doi.org/10.1016/0021-9045(81)90101-5 DOI: https://doi.org/10.1016/0021-9045(81)90101-5
DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer Verlag, Berlin - Heidelberg - New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Durrmeyer, J. L., Une formule d'inversion de la transformeé de Laplace: Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
Lorentz, G. G., Approximation of functions, Holt, Rinehart and Winston, New York, 1966.
Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Numer. Theor. Approx., 34, no. 1, pp. 79-91, 2005.
Pop, O. T., About a class of linear and positive operators (to appear in Proc. of ICAM4).
Pop, O. T., About operator of Bleimann, Butzer and Hahn (submitted).
Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.