About a general property for a class of linear positive operators and applications

Authors

  • Ovidiu T. Pop National College “Mihai Eminescu”, Satu Mare, Romania

DOI:

https://doi.org/10.33993/jnaat342-804

Keywords:

linear positive operators, Bernstein operators, Durrmeyer operators, Kantorovich operators, Bleimann, Butzer and Hahn operators
Abstract views: 229

Abstract

In this paper we demonstrate a general property for a class of linear positive operators. By particularization, we obtain the convergence and the evaluation for the rate of convergence in term of the first modulus of smoothness for the Bernstein operators, Durrmeyer operators, Kantorovich operators and Bleimann, Butzer and Hahn operators.

Downloads

Download data is not yet available.

References

Abel, U., Ivan, M., Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences, Calcolo, 36, pp. 143-160, 1999, https://doi.org/10.1007/s100920050028 DOI: https://doi.org/10.1007/s100920050028

Abel, U., Ivan, M., Best constant for a Bleimann, Butzer and Hahn moment estimation, East J. Approx., 6, no. 3, pp. 349-355, 2000.

Abel, U., Ivan, M., Durrmeyer variants of the Bleimann, Butzer and Hahn operators, The 5th Romanian-German Seminar on Approximation Theory and its Applications, Sibiu, Romania, 2002, pp. 1-8.

Agratini, O., Aproximare prin operatori liniari, Presa Univ. Clujeană, Cluj-Napoca, Romania, 2000 (Romanian).

Bleimann, G., Butzer, P. L., Hahn, L., A Bernstein type operator approximating continuous functions on the semi-axis, Indag. Math., 42, pp. 255-262, 1980, https://doi.org/10.1016/1385-7258(80)90027-x DOI: https://doi.org/10.1016/1385-7258(80)90027-X

Derriennic, M. M., Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes des Bernstein modifiès, J. Approx. Theory, 31, pp. 325-343, 1981, https://doi.org/10.1016/0021-9045(81)90101-5 DOI: https://doi.org/10.1016/0021-9045(81)90101-5

DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer Verlag, Berlin - Heidelberg - New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Durrmeyer, J. L., Une formule d'inversion de la transformeé de Laplace: Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.

Lorentz, G. G., Approximation of functions, Holt, Rinehart and Winston, New York, 1966.

Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Numer. Theor. Approx., 34, no. 1, pp. 79-91, 2005.

Pop, O. T., About a class of linear and positive operators (to appear in Proc. of ICAM4).

Pop, O. T., About operator of Bleimann, Butzer and Hahn (submitted).

Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).

Downloads

Published

2005-08-01

How to Cite

Pop, O. T. (2005). About a general property for a class of linear positive operators and applications. Rev. Anal. Numér. Théor. Approx., 34(2), 175–180. https://doi.org/10.33993/jnaat342-804

Issue

Section

Articles