Total Positivity: an application to positive linear operators and to their limiting semigroups

Authors

  • Antonio Attalienti Department of Economics-University of Bari, Italy
  • Ioan Raşa Technical University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat361-855

Keywords:

weak Tchebycheff systems, total positivity, positive linear operators, strongly continuous semigroups
Abstract views: 301

Abstract

Some shape-preserving properties of positive linear operators, involving higher order convexity and Lipschitz classes, are investigated from the point of view of weak Tchebycheff systems and total positivity in the sense of Karlin [8]. The same properties are shown to be fulfilled by the strongly continuous semigroup \((T(t))_{t\geq 0}\), if any, generated by the iterates of the relevant operators, in the spirit of Altomare's theory.

Downloads

Download data is not yet available.

References

Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, W. de Gruyter, Berlin-New York, 1994. DOI: https://doi.org/10.1515/9783110884586

Altomare, F. and Carbone, I., On some degenerate differential operators on weighted function spaces, J. Math. Anal. Appl., 213 (1997), 308-333, https://doi.org/10.1006/jmaa.1997.5540 DOI: https://doi.org/10.1006/jmaa.1997.5540

Altomare, F. and Mangino, E.M., On a class of elliptic-parabolic equations on unbounded intervals, Positivity, 5 (2001), 239-257. DOI: https://doi.org/10.1023/A:1011450903149

Altomare, F. and Raşa, I., On some classes of diffusion equations and related approximation problems, Trends and Applications in Constructive Approximation, M.G. de Bruin, D.H. Mache and J. Szabados (Eds.), ISNM 151, 13-26, Birkhäuser-Verlag, Basel, 2005, https://doi.org/10.1007/3-7643-7356-3_2 DOI: https://doi.org/10.1007/3-7643-7356-3_2

Attalienti, A., Generalized Bernstein-Durrmeyer operators and the associated limit semigroup, J. Approximation Theory, 99 (1999), 289-309, https://doi.org/10.1006/jath.1999.3329 DOI: https://doi.org/10.1006/jath.1999.3329

Beesack, P.R. and Pečarić, J.E., On Jensen's inequality for convex functions, J. Math. Anal. Appl., 110 (1985), 536-552, https://doi.org/10.1016/0022-247x(85)90315-4 DOI: https://doi.org/10.1016/0022-247X(85)90315-4

DeVore, R.A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993, https://doi.org/10.1007/978-3-662-02888-9 DOI: https://doi.org/10.1007/978-3-662-02888-9

Karlin, S., Total Positivity, Stanford Univ. Press, Stanford, 1968.

Lupaş, A., Die Folge der Beta Operatoren, Dissertation, Universitat Stuttgart, 1972.

Mangino, E.M., Differential operators with second order degeneracy and positive approximation processes, Constr. Approx., 18 (2002), 443-466, https://doi.org/10.1007/s00365-001-0021-9 DOI: https://doi.org/10.1007/s00365-001-0021-9

Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse, Mathematica (Cluj), 1 (24) (1959), 95-142.

Raşa, I., and Vladislav, T., Analizaă Numerică. Curbe spline, operatori Bernstein, algoritmul lui Casteljau, Editura Tehnică, Bucureşti, 1998.

Raşa, I., Semigroups associated to Mache operators, Advanced Problems in Constructive Approximation, M.D. Buhman and D.H. Mache (Eds.), ISNM 142, 143-152, Birkhäuser-Verlag, Basel, 2002, https://doi.org/10.1007/978-3-0348-7600-1_11 DOI: https://doi.org/10.1007/978-3-0348-7600-1_11

Szegö, G., Orthogonal Polynomials, American Math. Soc., Coll. Publ., 23, 1985.

Downloads

Published

2007-02-01

How to Cite

Attalienti, A., & Raşa, I. (2007). Total Positivity: an application to positive linear operators and to their limiting semigroups. Rev. Anal. Numér. Théor. Approx., 36(1), 51–66. https://doi.org/10.33993/jnaat361-855

Issue

Section

Articles