Total Positivity: an application to positive linear operators and to their limiting semigroups
DOI:
https://doi.org/10.33993/jnaat361-855Keywords:
weak Tchebycheff systems, total positivity, positive linear operators, strongly continuous semigroupsAbstract
Some shape-preserving properties of positive linear operators, involving higher order convexity and Lipschitz classes, are investigated from the point of view of weak Tchebycheff systems and total positivity in the sense of Karlin [8]. The same properties are shown to be fulfilled by the strongly continuous semigroup \((T(t))_{t\geq 0}\), if any, generated by the iterates of the relevant operators, in the spirit of Altomare's theory.Downloads
References
Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, W. de Gruyter, Berlin-New York, 1994. DOI: https://doi.org/10.1515/9783110884586
Altomare, F. and Carbone, I., On some degenerate differential operators on weighted function spaces, J. Math. Anal. Appl., 213 (1997), 308-333, https://doi.org/10.1006/jmaa.1997.5540 DOI: https://doi.org/10.1006/jmaa.1997.5540
Altomare, F. and Mangino, E.M., On a class of elliptic-parabolic equations on unbounded intervals, Positivity, 5 (2001), 239-257. DOI: https://doi.org/10.1023/A:1011450903149
Altomare, F. and Raşa, I., On some classes of diffusion equations and related approximation problems, Trends and Applications in Constructive Approximation, M.G. de Bruin, D.H. Mache and J. Szabados (Eds.), ISNM 151, 13-26, Birkhäuser-Verlag, Basel, 2005, https://doi.org/10.1007/3-7643-7356-3_2 DOI: https://doi.org/10.1007/3-7643-7356-3_2
Attalienti, A., Generalized Bernstein-Durrmeyer operators and the associated limit semigroup, J. Approximation Theory, 99 (1999), 289-309, https://doi.org/10.1006/jath.1999.3329 DOI: https://doi.org/10.1006/jath.1999.3329
Beesack, P.R. and Pečarić, J.E., On Jensen's inequality for convex functions, J. Math. Anal. Appl., 110 (1985), 536-552, https://doi.org/10.1016/0022-247x(85)90315-4 DOI: https://doi.org/10.1016/0022-247X(85)90315-4
DeVore, R.A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993, https://doi.org/10.1007/978-3-662-02888-9 DOI: https://doi.org/10.1007/978-3-662-02888-9
Karlin, S., Total Positivity, Stanford Univ. Press, Stanford, 1968.
Lupaş, A., Die Folge der Beta Operatoren, Dissertation, Universitat Stuttgart, 1972.
Mangino, E.M., Differential operators with second order degeneracy and positive approximation processes, Constr. Approx., 18 (2002), 443-466, https://doi.org/10.1007/s00365-001-0021-9 DOI: https://doi.org/10.1007/s00365-001-0021-9
Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse, Mathematica (Cluj), 1 (24) (1959), 95-142.
Raşa, I., and Vladislav, T., Analizaă Numerică. Curbe spline, operatori Bernstein, algoritmul lui Casteljau, Editura Tehnică, Bucureşti, 1998.
Raşa, I., Semigroups associated to Mache operators, Advanced Problems in Constructive Approximation, M.D. Buhman and D.H. Mache (Eds.), ISNM 142, 143-152, Birkhäuser-Verlag, Basel, 2002, https://doi.org/10.1007/978-3-0348-7600-1_11 DOI: https://doi.org/10.1007/978-3-0348-7600-1_11
Szegö, G., Orthogonal Polynomials, American Math. Soc., Coll. Publ., 23, 1985.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.