Approximating solutions of equations using Newton's method with a modified Newton's method iterate as a starting point

Authors

  • Ioannis Argyros Cameron University, USA

DOI:

https://doi.org/10.33993/jnaat362-862

Keywords:

Banach space, Newton-Kantorovich method, radius of convergence, Fréchet-derivative, Banach lemma on invertible operators
Abstract views: 379

Abstract

In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [6]-[8]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations in a Banach space setting. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [6]-[8]. Numerical examples are also provided.

Downloads

Download data is not yet available.

References

Amat, S., Busquier, S. and Candela, V., A class of quasi-Newton generalized Steffensen methods on Banach spaces, J. Comput. Appl. Math., 149, pp. 397-408, 2002, https://doi.org/10.1016/s0377-0427(02)00484-3 DOI: https://doi.org/10.1016/S0377-0427(02)00484-3

Argyros, I.K., On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 169, pp. 315-332, 2004, https://doi.org/10.1016/j.cam.2004.01.029 DOI: https://doi.org/10.1016/j.cam.2004.01.029

Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic., 298, 2, pp. 374-397, 2004, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008

Argyros, I.K., Computational theory of iterative methods, Studies in Computational Mathematics, 15 (Editors: C.K. Chui and L. Wuytack), Elsevier Publ. Co., New York, 2007, https://doi.org/10.1016/s1570-579x(13)60006-3 DOI: https://doi.org/10.1016/S1570-579X(13)60006-3

Gutierrez, J.M., Hernandez, M.A. and Salanova, M.A., Accessibility of solutions by Newton's method, Intern. J. Comput. Math., 57, pp. 239-247, 1995, https://doi.org/10.1080/00207169508804427 DOI: https://doi.org/10.1080/00207169508804427

Kantorovich, L.V. and Akilov, G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2

Krasnosel′skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutitskii, Ya.B. and Stetsenko, V.Ya., Approximate Solution of Operator Equations, Wolters-Noordhoff Publ., Groningen, 1972. DOI: https://doi.org/10.1007/978-94-010-2715-1

Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ., 3, pp. 129-142, 1977, https://doi.org/10.4064/-3-1-129-142 DOI: https://doi.org/10.4064/-3-1-129-142

Downloads

Published

2007-08-01

How to Cite

Argyros, I. (2007). Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point. Rev. Anal. Numér. Théor. Approx., 36(2), 123–137. https://doi.org/10.33993/jnaat362-862

Issue

Section

Articles