Approximating solutions of equations using Newton's method with a modified Newton's method iterate as a starting point
DOI:
https://doi.org/10.33993/jnaat362-862Keywords:
Banach space, Newton-Kantorovich method, radius of convergence, Fréchet-derivative, Banach lemma on invertible operatorsAbstract
In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [6]-[8]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations in a Banach space setting. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [6]-[8]. Numerical examples are also provided.Downloads
References
Amat, S., Busquier, S. and Candela, V., A class of quasi-Newton generalized Steffensen methods on Banach spaces, J. Comput. Appl. Math., 149, pp. 397-408, 2002, https://doi.org/10.1016/s0377-0427(02)00484-3 DOI: https://doi.org/10.1016/S0377-0427(02)00484-3
Argyros, I.K., On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 169, pp. 315-332, 2004, https://doi.org/10.1016/j.cam.2004.01.029 DOI: https://doi.org/10.1016/j.cam.2004.01.029
Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic., 298, 2, pp. 374-397, 2004, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008
Argyros, I.K., Computational theory of iterative methods, Studies in Computational Mathematics, 15 (Editors: C.K. Chui and L. Wuytack), Elsevier Publ. Co., New York, 2007, https://doi.org/10.1016/s1570-579x(13)60006-3 DOI: https://doi.org/10.1016/S1570-579X(13)60006-3
Gutierrez, J.M., Hernandez, M.A. and Salanova, M.A., Accessibility of solutions by Newton's method, Intern. J. Comput. Math., 57, pp. 239-247, 1995, https://doi.org/10.1080/00207169508804427 DOI: https://doi.org/10.1080/00207169508804427
Kantorovich, L.V. and Akilov, G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2
Krasnosel′skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutitskii, Ya.B. and Stetsenko, V.Ya., Approximate Solution of Operator Equations, Wolters-Noordhoff Publ., Groningen, 1972. DOI: https://doi.org/10.1007/978-94-010-2715-1
Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ., 3, pp. 129-142, 1977, https://doi.org/10.4064/-3-1-129-142 DOI: https://doi.org/10.4064/-3-1-129-142
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.