Some approximation properties of modified Szasz-Mirakyan-Kantorovich operators

Authors

  • Grzegorz Nowak University of Marketing and Management, Leszno, Poland
  • Aneta Sikorska-Nowak Adam Mickiewicz University, Poznan, Poland

DOI:

https://doi.org/10.33993/jnaat381-903

Keywords:

Szasz-Mirakyan operator, rate of convergence, Lebesgue-Denjoy point
Abstract views: 241

Abstract

In this paper we consider the modified Szasz-Mirakyan-Kantorovich operators for functions \(f\) integrable in the sense of Denjoy-Perron. Moreover, we estimate the rate of pointwise convergence of \(M_nf(x)\) at the Lebesgue-Denjoy points \(x\) of \(f\) .

Downloads

Download data is not yet available.

References

Inspir, N. and Atakut, C., Approximation by modified Szasz-Mirakyan operators on weighted spaces, Proc. Indian Acad. Sci., 112 (4), pp. 571-578, 2002, https://doi.org/10.1007/bf02829690 DOI: https://doi.org/10.1007/BF02829690

Herman, T., On the Szasz-Mirakyan operator, Acta Math. Acad. Sci. Hung., 32 (1-2), pp. 163-173, 1978, https://doi.org/10.1007/bf01902211 DOI: https://doi.org/10.1007/BF01902211

Totik, V., Approximation by Szasz-Mirakyan-Kantorovich operators in L^{p} (p>1), Analysis Math., 9, pp. 147-167, 1983, https://doi.org/10.1007/bf01982010 DOI: https://doi.org/10.1007/BF01982010

Totik, V., Uniform approximation by Szasz-Mirakyan type operators, Acta Math. Hung., 41, pp. 241-307, 1983, https://doi.org/10.1007/bf01961317 DOI: https://doi.org/10.1007/BF01961317

Saks, S., Theory of the Integral, New York, 1937.

Walczak, Z., On certain modified Szasz-Mirakyan operators for functions of two variables, Demonstratio Math., 33 (1), pp. 91-100, 2000,https://doi.org/10.1515/dema-2000-0112 DOI: https://doi.org/10.1515/dema-2000-0112

Walczak, Z., On modified Szasz-Mirakyan operators, Novi Sad J. Math., 33 (1), pp. 93-107, 2003.

Downloads

Published

2009-02-01

Issue

Section

Articles

How to Cite

Nowak, G., & Sikorska-Nowak, A. (2009). Some approximation properties of modified Szasz-Mirakyan-Kantorovich operators. Rev. Anal. Numér. Théor. Approx., 38(1), 73-82. https://doi.org/10.33993/jnaat381-903