Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means

Authors

  • Wei-feng Xia Huzhou Teachers College, China
  • Chu Yu-Ming Huzhou Teachers College, China

DOI:

https://doi.org/10.33993/jnaat392-1038

Keywords:

logarithmic mean, identric mean, arithmetic mean, harmonic mean
Abstract views: 278

Abstract

The logarithmic mean \(L(a,b)\), identric mean \(I(a,b)\), arithmeticmean \(A(a,b)\) and harmonic mean \(H(a,b)\) of two positive real values \(a\) and \(b\) are defined by\begin{align*}\label{main}&L(a,b)=\begin{cases}\tfrac{b-a}{\log b-\log a},& a\neq b,\\a,&a=b,\end{cases}\\&I(a,b)=\begin{cases}\tfrac{1}{{\rm e}}\left(\tfrac{b^b}{a^a}\right)^{\tfrac{1}{b-a}},& a\neq b,\\a,&a=b,\end{cases}\end{align*}\(A(a,b)=\tfrac{a+b}{2}\) and \(H(a,b)=\tfrac{2ab}{a+b}\), respectively. In this article, we answer the questions: What are the best possible parameters \(\alpha_{1},\alpha_{2},\beta_{1}\) and \(\beta_{2}\), such that \(\alpha_{1}A(a,b)+(1-\alpha_{1})H(a,b)\leq L(a,b)\leq\beta_{1}A(a,b)+(1-\beta_{1})H(a,b)\) and \(\alpha_{2}A(a,b)+(1-\alpha_{2})H(a,b)\leq I(a,b)\leq\beta_2A(a,b)+(1-\beta_{2})H(a,b)\) hold for all \(a,b>0\)?

Downloads

Download data is not yet available.

References

M. Tominaga, Specht's ratio and logarithmic mean in the Young inequality, Math. Inequal. Appl., 7(1), pp. 113-125, 2004, https://doi.org/10.7153/mia-07-13 DOI: https://doi.org/10.7153/mia-07-13

F. Qi and B.N. Guo, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese J. Math., 7(2), pp. 229-237, https://doi.org/10.11650/twjm/1500575060 DOI: https://doi.org/10.11650/twjm/1500575060

J. Maloney, J. Heidel and J. Pečarić, A reverse Hölder type inequality for the logarithmic mean and generalizations, J. Austral. Math. Soc. Ser. B, 41(3), pp. 401-409, 2000, https://doi.org/10.1017/s0334270000011322 DOI: https://doi.org/10.1017/S0334270000011322

A.O. Pittenger, The symmetric, logarithmic and power means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 678-715, pp. 19-23, 1980.

P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and Their inequalities, Dordrecht: D. Reidel Publishing Co., 1988. DOI: https://doi.org/10.1007/978-94-017-2226-1

H. Alzer, Ungleichungen für (e/a)a(b/e)b , Elem. Math., 40, pp. 120-123, 1985.

H. Alzer, Ungleichungen für Mittelwerte, Arch. Math. (Basel), 47(5), pp. 422-426, 1986, https://doi.org/10.1007/bf01189983 DOI: https://doi.org/10.1007/BF01189983

F. Burk, Notes: The geometric, logarithmic, and arithmetic mean inequality, Amer. Math. Monthly, 94(6), pp. 527-528, 1987, https://doi.org/10.1080/00029890.1987.12000678 DOI: https://doi.org/10.1080/00029890.1987.12000678

B.C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79, pp. 615-618, 1972, https://doi.org/10.1080/00029890.1972.11993095 DOI: https://doi.org/10.1080/00029890.1972.11993095

T.P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81, pp. 879-883, 1974 https://doi.org/10.1080/00029890.1974.11993684 DOI: https://doi.org/10.1080/00029890.1974.11993684

J. Sándor, On the identric and logarithmic means, Aequationes Math., 40(2-3), pp. 261-270, 1990, https://doi.org/10.1007/bf02112299 DOI: https://doi.org/10.1007/BF02112299

J. Sándor, A note on some inequalities for means, Arch. Math. (Basel), 56(5), pp. 471-473, 1991, https://doi.org/10.1007/bf01200091 DOI: https://doi.org/10.1007/BF01200091

J. Sándor, On certain inequalities for means, J. Math. Anal. Appl., 189(2), pp. 602-606, 1995, https://doi.org/10.1006/jmaa.1995.1038 DOI: https://doi.org/10.1006/jmaa.1995.1038

J. Sándor, On refinements of certain inequalities for means, Arch. Math. (Brno), 31(4), pp. 279-282, 1995.

J. Sándor, On certain inequalities for means II, J. Math. Anal. Appl., 199(2), pp. 629-635, 1996, https://doi.org/10.1006/jmaa.1996.0165 DOI: https://doi.org/10.1006/jmaa.1996.0165

J. Sándor, On certain inequalities for means III, Arch. Math. (Basel), 76(1), pp. 34-40, 2001, https://doi.org/10.1007/s000130050539 DOI: https://doi.org/10.1007/s000130050539

J. Sándor and I. Rasa, Inequalities for certain means in two arguments, Nieuw Arch. Wisk. (4), 15(1-2), pp. 51-55, 1997, https://doi.org/10.1186/s13660-015-0828-8 DOI: https://doi.org/10.1186/s13660-015-0828-8

J. Sándor and T. Trif, Some new inequalities for means of two arguments, Int. J. Math. Math. Sci., 25(8), pp. 525-532, 2001, https://doi.org/10.1155/s0161171201003064 DOI: https://doi.org/10.1155/S0161171201003064

O. Kouba, New bounds for the identric mean of two arguments, J. Inequal. Pure Appl. Math., 9(3), Article 71, 6 pp, 2008.

J. Chen and B. Hu, The identric mean and the power mean inequalities of Ky Fan type, Facta Univ. Ser. Math. Inform., 4, pp. 15-18, 1989.

H.J. Seiffert, Ungleichungen für einen bestimmten Mittelwert, Nieuw Arch. Wisk. (4), 13(2), pp. 195-198, 1995.

H.J. Seiffert, Ungleichungen für elementare Mittelwerte, Arch. Math. (Basel), 64(2), pp. 129-131, 1995, https://doi.org/10.1007/bf01196631 DOI: https://doi.org/10.1007/BF01196631

K.B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag., 48, pp. 87-92, 1975,https://doi.org/10.2307/2689825 DOI: https://doi.org/10.1080/0025570X.1975.11976447

K.B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87(7), pp. 545-548, 1980, https://doi.org/10.1080/00029890.1980.11995086 DOI: https://doi.org/10.1080/00029890.1980.11995086

M.K. Vamanamurthy and M. Vuorinen, Inequalities for means, J. Math. Anal. Appl., 183(1), pp. 155-166, 1994, https://doi.org/10.1006/jmaa.1994.1137 DOI: https://doi.org/10.1006/jmaa.1994.1137

P. Kahlig and J. Matkowski, Functional equations involving the logarithmic mean, Z. Angew. Math. Mech., 76(7), pp. 385-390, 1996, https://doi.org/10.1002/zamm.19960760710 DOI: https://doi.org/10.1002/zamm.19960760710

A.O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly, 92(2), pp. 99-104, 1985, https://doi.org/10.1080/00029890.1985.11971549 DOI: https://doi.org/10.1080/00029890.1985.11971549

G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951. DOI: https://doi.org/10.1515/9781400882663

E.B. Leach and M.C. Sholander, Extended mean values II, J. Math. Anal. Appl., 92(1), pp. 207-223, 1983, https://doi.org/10.1016/0022-247x(83)90280-9 DOI: https://doi.org/10.1016/0022-247X(83)90280-9

H. Alzer and S.L. Qiu, Inequalities for means in two variables, Arch. Math. (Basel), 80(2), pp. 201-215, 2003, https://doi.org/10.1007/s00013-003-0456-2 DOI: https://doi.org/10.1007/s00013-003-0456-2

Downloads

Published

2010-08-01

How to Cite

Xia, W.- feng, & Yu-Ming, C. (2010). Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means. Rev. Anal. Numér. Théor. Approx., 39(2), 176–183. https://doi.org/10.33993/jnaat392-1038

Issue

Section

Articles