Supporting spheres for families of sets in product spaces
DOI:
https://doi.org/10.33993/jnaat21-10Abstract
Not available.Downloads
References
Caratheodory, C., Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo 32, 193, 1911. DOI: https://doi.org/10.1007/BF03014795
Dieudonné, J., Foundations of modern analysis. Pure and Applied Mathematics, Vol. X Academic Press, New York-London 1960 xiv+361 pp., MR0120319.
Eckhoff, Jürgen, Der Satz von Radon in konvexen Produktstrukturen. II. (German) Monatsh. Math. 73 1969 7-30, MR0243427, https://doi.org/10.1007/bf01297698 DOI: https://doi.org/10.1007/BF01297698
Fenchel, Werner, Über Krümmung und Windung geschlossener Raumkurven. (German) Math. Ann. 101 (1929), no. 1, 238-252, MR1512528, https://doi.org/10.1007/bf01454836 DOI: https://doi.org/10.1007/BF01454836
Hanner, Olof; Rådström, Hans, A generalization of a theorem of Fenchel. Proc. Amer. Math. Soc. 2, (1951). 589-593, MR0044142, https://doi.org/10.1090/s0002-9939-1951-0044142-0 DOI: https://doi.org/10.1090/S0002-9939-1951-0044142-0
Kramer, Horst, Németh, A. B., Supporting spheres for families of independent convex sets. Arch. Math. (Basel) 24 (1973), 91-96, MR0315590, https://doi.org/10.1007/bf01228180 DOI: https://doi.org/10.1007/BF01228180
Stoer, J., Witzgall, C., Convexity and optimization in finite dimensions. I. Die Grundlehren der mathematischen Wissenschaften, Band 163 Springer-Verlag, New York-Berlin 1970 ix+293 pp., MR0286498. DOI: https://doi.org/10.1007/978-3-642-46216-0
Valentine, Frederick A., Konvexe Mengen. (German) Übersetzung aus dem Englischen durch E. Heil. B. I.-Hochschultaschenbücher, Band 402/402a Bibliographisches Institut, Mannheim 1968 247 pp., MR0226495
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.