Best approximation in spaces with asymmetric norm
DOI:
https://doi.org/10.33993/jnaat351-1007Keywords:
spaces with asymmetric norm, best approximation, Hahn-Banach theorem, characterization of best approximationAbstract
In this paper we shall present some results on spaces with asymmetric seminorms, with emphasis on best approximation problems in such spaces.Downloads
References
Alegre, C. Ferrer, J. and Gregori, V., Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math., 28, no. 7, pp. 929-937, 1997.
-, On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math. Hungar., 82, no. 4, pp. 325-330, 1999.
Alimov, A. R., The Banach-Mazur theorem for spaces with nonsymmetric distance, Uspekhi Mat. Nauk, 58, no. 2, pp. 159-160, 2003. DOI: https://doi.org/10.4213/rm615
Babenko, V. F., Nonsymmetric approximations in spaces of summable functions, Ukrain. Mat. Zh., 34, no. 4, pp. 409-416, 538, 1982.
-, Nonsymmetric extremal problems of approximation theory, Dokl. Akad. Nauk SSSR, 269, no. 3, pp. 521-524, 1983.
- , Duality theorems for certain problems of the theory of approximation, Current problems in real and complex analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, pp. 3-13, 148, 1984.
Borodin, P. A., The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 329-337, 2001. DOI: https://doi.org/10.4213/mzm506
Cobzaş, S., Phelps type duality results in best approximation, Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 29-43, 2002. http://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art5
Cobzaş, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27, no. 3, 275-296, 2004, https://doi.org/10.2989/16073600409486100 DOI: https://doi.org/10.2989/16073600409486100
Cobzaş, S., Asymmetric locally convex spaces, Int. J. Math. Math. Sci., no. 16, 2585-2608, 2005, https://doi.org/10.1155/ijmms.2005.2585 DOI: https://doi.org/10.1155/IJMMS.2005.2585
Cobzaş, S. and Mustăţa, C., Extension of bilinear functionals and best approximation in 2-normed spaces, Studia Univ. Babeş-Bolyai, Mathematica, 43, pp. 1-13, 1998.
-, Extension of bounded linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 39-50, 2004, http://ictp.acad.ro/jnaat/journal/article/view/2004-vol33-no1-art5
De Blasi, F. S. and Myjak, J., On a generalized best approximation problem, J. Approx. Theory, 94, no. 1, pp. 54-72, 1998, https://doi.org/10.1006/jath.1998.3177 DOI: https://doi.org/10.1006/jath.1998.3177
Dolzhenko, E. P. and Sevastyanov, E. A., Approximations with a sign-sensitive weight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat., 62, no. 6, pp. 59-102, 1998. DOI: https://doi.org/10.1070/IM1998v062n06ABEH000221
-, Sign-sensitive approximations, J. Math. Sci. (New York), 91, no. 5, pp. 3205-3257, 1998, https://doi.org/10.1007/bf02433803 DOI: https://doi.org/10.1007/BF02433803
-, Approximation with a sign-sensitive weight (stability, applications to snake theory and Hausdorff approximations), Izv. Ross. Akad. Nauk Ser. Mat., 63, no. 3, pp. 77-118, 1999 https://doi.org/10.4213/im243 DOI: https://doi.org/10.1070/IM1999v063n03ABEH000243
Ferrer, J., Gregori, V. and Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, no. 3, pp. 877-884, 1993, https://doi.org/10.1216/rmjm/1181072529 DOI: https://doi.org/10.1216/rmjm/1181072529
García-Raffi, L. M., Romaguera, S. and Sánchez Pérez, E. A., Extensions of asymmetric norms to linear spaces, Rend. Istit. Mat. Univ. Trieste, 33, nos. 1-2, 113-125, 2001.
-, The bicompletion of an asymmetric normed linear space, Acta Math. Hungar., 97, no. 3, pp. 183-191, 2002, https://doi.org/10.1023/a:1020823326919 DOI: https://doi.org/10.1023/A:1020823326919
-, Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput. Modelling, 36, nos. 1-2, pp. 1-11, 2002, https://doi.org/10.1016/s0895-7177(02)00100-0 DOI: https://doi.org/10.1016/S0895-7177(02)00100-0
-, The dual space of an asymmetric normed linear space, Quaest. Math., 26, no. 1, pp. 83- 96, 2003, https://doi.org/10.2989/16073600309486046 DOI: https://doi.org/10.2989/16073600309486046
-, On Hausdorff asymmetric normed linear spaces, Houston J. Math., 29, no. 3, pp. 717-728 (electronic), 2003.
Krein, M. G. and Nudelman, A. A., The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977, https://doi.org/10.1090/mmono/050 DOI: https://doi.org/10.1090/mmono/050
Chong Li, On well posed generalized best approximation problems, J. Approx. Theory, 107, no. 1, pp. 96-108, 2000, https://doi.org/10.1006/jath.2000.3503 DOI: https://doi.org/10.1006/jath.2000.3503
Chong Li and Renxing Ni, Derivatives of generalized distance functions and existence of generalized nearest points, J. Approx. Theory, 115, no. 1, pp. 44-55, 2002, https://doi.org/10.1006/jath.2001.3651 DOI: https://doi.org/10.1006/jath.2001.3651
Mohebi, H., On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory, 107, no. 1, pp. 87- 95, 2000, https://doi.org/10.1006/jath.2000.3483 DOI: https://doi.org/10.1006/jath.2000.3483
-, Pseudo-Chebyshev subspaces in L[sp] 1, Korean J. Comput. Appl. Math., 7, no. 2, pp. 465-475, 2000. DOI: https://doi.org/10.1007/BF03012206
-, On pseudo-Chebyshev subspaces in normed linear spaces, Math. Sci. Res. Hot-Line, 5, no. 9, pp. 29-45, 2001.
-, Quasi-Chebyshev subspaces in dual spaces, J. Nat. Geom., 20, nos. 1-2, pp. 33-44, 2001.
-, On pseudo-Chebyshev subspaces in normed linear spaces, J. Nat. Geom., 24, nos. 1-2, pp. 37-56, 2003.
Mohebi, H. and Rezapour, Sh., On weak compactness of the set of extensions of a continuous linear functional, J. Nat. Geom., 22, nos. 1-2, pp. 91-102, 2002.
Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61-67, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8
-, On the extremal semi-Lipschitz functions, Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 103-108, 2002, http://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art11
-, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18, no. 2, pp. 275-280, 2002.
-, On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space, Rev. Anal. Numer. Theor. Approx., 32, no. 2, pp. 187-192, 2003, http://ictp.acad.ro/jnaat/journal/article/view/2003-vol32-no2-art7
Renxing Ni, Existence of generalized nearest points, Taiwanese J. Math., 7, no. 1, pp. 115-128, 2003, https://doi.org/10.11650/twjm/1500407521 DOI: https://doi.org/10.11650/twjm/1500407521
Phelps, R. R., Uniqueness of Hahn-Banach extensions and best approximations, Trans. Amer. Marth Soc., 95, pp. 238-255, 1960, https://doi.org/10.1090/s0002-9947-1960-0113125-4 DOI: https://doi.org/10.1090/S0002-9947-1960-0113125-4
Rezapour, Sh., ε-weakly Chebyshev subspaces of Banach spaces, Anal. Theory Appl., 19, no. 2, pp. 130-135, 2003, https://doi.org/10.1007/bf02835237 DOI: https://doi.org/10.1007/BF02835237
Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, no. 2, pp. 292-301, 2000, https://doi.org/10.1006/jath.1999.3439 DOI: https://doi.org/10.1006/jath.1999.3439
Romaguera, S. and Schellekens, M., Duality and quasi-normability for complexity spaces, Appl. Gen. Topol., 3, no. 1, pp. 91-112, 2002, https://doi.org/10.4995/agt.2002.2116 DOI: https://doi.org/10.4995/agt.2002.2116
Simonov, B. V., On the element of best approximation in spaces with nonsymmetric quasinorm, Mat. Zametki, 74, no. 6, pp. 902-912, 2003, https://doi.org/10.4213/mzm318 DOI: https://doi.org/10.1023/B:MATN.0000009022.34482.3e
Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Editura Academiei Romane and Springer-Verlag, Bucharest-New York-Berlin, 1970. DOI: https://doi.org/10.1007/978-3-662-41583-2
Zanco, C. and Zucchi, A., Moduli of rotundity and smoothness for convex bodies, Bolletino U. M. I., (7), 7-B, pp. 833-855, 1993.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.