The first absolute moment for some operators
DOI:
https://doi.org/10.33993/jnaat392-1035Keywords:
Bernstein's polynomials, Szász-Mirakjan operators, Bleimann-Butzer-Hahn operators, Meyer-Konig and Zeller operators, absolute moment of high orderAbstract
In this paper we will determinate the first absolute moments for Bernstein, Szász-Mirakjan, Bleimann-Butzer-Hahn, Meyer-König and Zeller operators. For the Szász-Mirakjan operators we give some properties with the absolute moment of high order.Downloads
References
M. Beker and R.J. Nessel, A global approximation theorem for Meyer-König and Zeller opeators, Math. Zeitschr., 160, pp. 195-206, 1978, https://doi.org/10.1007/bf01237033 DOI: https://doi.org/10.1007/BF01237033
G. Bleimann, P.L.. Butzer and L.A. Hahn, Bernstein-type operator approximating continuous fucntion on the semi-axix, Indag. Math., 42, pp. 255-262, 1980, https://doi.org/10.1016/1385-7258(80)90027-x DOI: https://doi.org/10.1016/1385-7258(80)90027-X
S.N. Bernstein, Démonstration fu théorème de Weierstrass fondée sur le calcul de probabilité, Commun. Soc. Math. Kharkow (2), 13, pp. 1-2, 1912-1913.
J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., (9), 23, pp. 219-247, 1994.
J. Meier, Zur Approximation durch gewöhnliche und modifizierte Bernstein-Operatoren unter besonderer Berücksichtigung quantitaver Aussagen und asymtotischer Formeln, Staatsexamensarbeit, Unviersität Duisburg, 1982.
W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihen, Studia Math., 19, pp. 89-94, 1960, https://doi.org/10.4064/sm-19-1-89-94 DOI: https://doi.org/10.4064/sm-19-1-89-94
G.M. Mirakjan, Approximation of continuous functions with the aid of polynomials, Dokl, Acad. Nauk SSSR, 31, pp. 201-205, 1941 (in Russian).
M.W. Müller, Die folge der Gammaoperatoren, Dissertation, Stutgart, 1967.
O.T. Pop, About the first order modulus of smoothness, Caprathian J. Math., 20, pp. 101-108, 2004.
F. Schurer and F.W. Steutel, On the degree of approximation of fucntions in C¹([0,1]) by Bernstein polynomials, T.H. Report 75-WSK-07, Eindhoven University of Technology, 1975.
D. D. Stancu, Gh. Coman, O. Agratini and R. Trîmbiţaş, Numerical analysis and approximation theory, I. Cluj, University Press, Cluj-Napoca, 2001, (in Romanian).
O. Szász, Generalization of S.N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards, 45, pp. 239-245, 1950, https://doi.org/10.6028/jres.045.024 DOI: https://doi.org/10.6028/jres.045.024
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.