An optimal double inequality among the one-parameter, arithmetic and harmonic means
DOI:
https://doi.org/10.33993/jnaat392-1037Keywords:
one-parameter mean, arithmetic mean, harmonic meanAbstract
For \(p\in\mathbb{R}\), the one-parameter mean \(J_{p}(a,b)\), arithmetic mean \(A(a,b)\), and harmonic mean \(H(a,b)\) of two positive real numbers \(a\) and \(b\) are defined by\begin{equation*}J_{p}(a,b)=\begin{cases}\tfrac{p(a^{p+1}-b^{p+1})}{(p+1)(a^p-b^p)}, & a\neq b,p\neq 0,-1,\\\tfrac{a-b}{\log{a}-\log{b}}, & a\neq b,p=0,\\\tfrac{ab(\log{a}-\log{b})}{a-b}, & a\neq b,p=-1,\\a, & a=b,\end{cases}\end{equation*}\(A(a,b)=\tfrac{a+b}{2}\), and \(H(a,b)=\tfrac{2ab}{a+b}\),respectively. In this paper, we answer the question: For \(\alpha\in(0,1)\), what are the greatest value \(r_{1}\) and the least value \(r_{2}\) such that the double inequality \(J_{r_{1}}(a,b)<\alpha A(a,b)+(1-\alpha)H(a,b)<J_{r_{2}}(a,b)\) holds for all \(a,b>0\) with \(a\neq b\)?Downloads
References
H. Alzer, On Stolarsky's mean value family, Internat. J. Math. Ed. Sci. Tech., 20(1), pp. 186-189, 1987.
H. Alzer, Über eine einparametrige Familie Von Mittelwerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 1987, pp. 1-9, 1988.
H. Alzer, Über eine einparametrige Familie Von Mittelwerten II, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 1988, pp. 23-29, 1989.
F. Qi, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Math. Educ., 5(3), pp. 63-90, 2003.
W.-S. Cheung and F. Qi, Logarithmic convexity of the one-parameter mean values, Taiwanese J. Math., 11(1), pp. 231-237, 2007, https://doi.org/10.11650/twjm/1500404648 DOI: https://doi.org/10.11650/twjm/1500404648
F. Qi, P. Cerone, S.S. Dragomir and H.M. Srivastava, Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput., 208(1), pp. 129-133, 2009, https://doi.org/10.1016/j.amc.2008.11.023 DOI: https://doi.org/10.1016/j.amc.2008.11.023
N.-G. Zheng, Z.-H. Zhang and X.-M. Zhang, Schur-convexity of two types of one-parameter mean values in n variables, J. Inequal. Appl., Art. ID 78175, 10 pages, 2007, https://doi.org/10.1155/2007/78175. DOI: https://doi.org/10.1155/2007/78175
P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and Their Inequalities, D. Reidel Pubishing Co., Dordrecht, 1988. DOI: https://doi.org/10.1007/978-94-017-2226-1
H. Alzer and W. Janous, Solution of problem 8^{∗}, Crux Math., 13, pp. 173-178, 1987, https://doi.org/10.1007/bf01436200 DOI: https://doi.org/10.1007/BF01436200
Q.-J. Mao, Power mean, logarithmic mean and Heronian dual mean of two positive number, J. Suzhou Coll. Edu., 16(1-2), pp. 82-85, 1999.
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.