Sandwich theorems for radiant functions
DOI:
https://doi.org/10.33993/jnaat441-1050Keywords:
sandwich theorems, radiant functions, coradiant functionsAbstract
We show that between two graphs, one of a radiant function and the other of a coradiant, both dened on a real interval containing 0, there exists at least one line which separates the graphs. The conditions for the uniqueness of a separating linear function are also established.
Downloads
References
K. Baron, J. Matkowski and K. Nikodem, A Sandwich with convexity, Mathematica Panonica, 5 (1994) no. 1, pp. 139-144.
W. Förg-Rob, K. Nicodem and Z. Pales, Separation by monotonic functions, Mathematica Panonica, 7 (1996) no. 2, pp. 191-196.
B. Fuchssteiner and W. Lusky, Convex Cones, North Holland Math. Stud., 56 (North Holland, Amsterdam, 1981).
J.A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc.,148 (1970), pp. 147-169. http://doi.org/10.2307/1995044 DOI: https://doi.org/10.1090/S0002-9947-1970-0415289-8
E.J. McShane, Extension of range of functions, Bull. Amer. Math. Soc.,40 (1934), pp. 837-842. http://doi.org/10.1090/S0002-9904-1934-05978-0 DOI: https://doi.org/10.1090/S0002-9904-1934-05978-0
C. Mustata, Norm preserving extension of starshaped Lipschitz functions, Mathematica (Cluj), 19 (42)2 (1977), pp. 183-187.
C. Mustata, Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer, Théor. Approx., 30 (2001) no. 1, pp. 61-67. http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8
C. Mustata, On the extensions preserving the shape of semi-Hölder function, Results. Math., 63 (2013), pp. 425-433. http://doi.org/10.1007/s00025-011-0206-x DOI: https://doi.org/10.1007/s00025-011-0206-x
K. Nikodem and S. Wasowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math.,49 (1995), pp. 160-164. http://doi.org/10.1007/BF01827935 DOI: https://doi.org/10.1007/BF01827935
A.M. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publisher, Boston-Dordrecht London, 2000. DOI: https://doi.org/10.1007/978-1-4757-3200-9
A.M. Rubinov and A.P. Shveidel, Radiant and star-shaped functions, Pacific Journal of Optimization, 3 (2007) no. 1, pp. 193-212.
S. Simons, The asymmetric sandwich theorem, Journal of Convex Analysis, 20 (2013) no. 1, pp. 107-124.
S. Suzuki and D. Kuroiwa, Sandwich theorem for quasiconvex functions and its applications , J. Math. Anal. Appl., 379 (2011), pp. 649-655. http://doi.org/10.1016/j.jmaa.2011.01.061 DOI: https://doi.org/10.1016/j.jmaa.2011.01.061
A. Szaz, The infimal convolution can be used to derive extensions theorems from sandwich ones, Acta Sci. Math. (Szeged), 76 (2010), pp. 489-499. DOI: https://doi.org/10.1007/BF03549839
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.