Ball convergence for an Aitken-Newton method
DOI:
https://doi.org/10.33993/jnaat472-1082Keywords:
Nonlinear equations, Aitken-Newton method, local convergence, eighth order of convergenceAbstract
We present a local convergence analysis of an eighth-order Aitken-Newton method for approximating a locally unique solution of a nonlinear equation. Earlier studies have shown convergence of these methods under hypotheses up to the eighth derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. This way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.
Downloads
References
Adomian, G.: Solving Frontier problem of physics: The decomposition method, Kluwer Academic Publishers, Dordrecht, 1994, https://doi.org/10.1007/978-94-015-8289-6_5 DOI: https://doi.org/10.1007/978-94-015-8289-6
Amat, S., Busquier, S., Guttierrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157 (2003), 197–205, https://doi.org/10.1016/s0377-0427(03)00420-5 DOI: https://doi.org/10.1016/S0377-0427(03)00420-5
Amat, S., Busquier, S., Plaza, S.: Dynamics of the King’s and Jarratt iterations. Aequationes. Math. 69 (2005), 212–213, https://doi.org/10.1007/s00010-004-2733-y DOI: https://doi.org/10.1007/s00010-004-2733-y
Amat, S., Hernandez, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. ´Comput. 206 (1) (2008), 164–174, https://doi.org/10.1016/j.amc.2008.08.050 DOI: https://doi.org/10.1016/j.amc.2008.08.050
Argyros, I.K.: Quadratic equations annd applications to Chandershekhar’s and related equations, Bull Austral. Math. Soc. 32 (1985), 275–292, https://doi.org/10.1017/s0004972700009953 DOI: https://doi.org/10.1017/S0004972700009953
Argyros, I.K. Chen D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12 (2) (1993), 119–128. DOI: https://doi.org/10.22199/S07160917.1993.0002.00002
Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374–397 https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008
Argyros, I.K.: Computational Theory of Iterative Methods, Series: Studies Comput. Math. 15, Editors: C.K. Chui and L. Wuytack, Elsevier, New York, USA, (2007) https://doi.org/10.1016/s1570-579x(07)x8020-0 DOI: https://doi.org/10.1016/S1570-579X(07)X8020-0
Argyros, I.K., Hilout S.: Weaker conditions for the convergence of Newton’s method. J. Complexity. 28 (2012), 364–387 https://doi.org/10.1016/j.jco.2011.12.003 DOI: https://doi.org/10.1016/j.jco.2011.12.003
Argyros, I.K.: Numerical Methods in Nonlinear Analysis. World Scientific Publ. Comp. New Jersey, (2013) DOI: https://doi.org/10.1142/8475
Argyros, I.K., Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weaker conditions. Int. J. Appl. Comput. Math. https://doi.org/10.1007/s40819-015-0078-y DOI: https://doi.org/10.1007/s40819-015-0078-y
W.A. Beyer, B.R. Ebanks, C.R. Qualls, Convergence rates and convergence-order profiles for sequences, Acta Appl. Math., 20 (1990), 267-284, https://doi.org/10.1007/BF00049571 DOI: https://doi.org/10.1007/BF00049571
E. Catinas, A survey on the high convergence orders and computational convergence orders of sequences, Appl. Math. Comput., 343 (2019) 1-20, https://doi.org/10.1016/j.amc.2018.08.006 DOI: https://doi.org/10.1016/j.amc.2018.08.006
Danby, J.M.A., Burkardt, T.M.: The solution of Kepler’s equation. I. Celest. Mech. 31 (1983), 95–107, https://doi.org/10.1007/bf01686811 DOI: https://doi.org/10.1007/BF01686811
Ezquerro, J.A., Hernandez, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer Math. 49 (2009), 325–342 https://doi.org/10.1007/s10543-009-0226-z DOI: https://doi.org/10.1007/s10543-009-0226-z
Guttierrez, J.M., Hernandez, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36 (1998), 1–8, https://doi.org/10.1016/s0898-1221(98)00168-0 DOI: https://doi.org/10.1016/S0898-1221(98)00168-0
Kantrovich L.V., Akilov G.P.: Functional Analysis. Pergamon Press, Oxford, (1982)
Magrenan A.A.: Estudio de la dinamica del metodo de Newton amortiguado (PhD Thesis), Servicio de Publicaciones Universidad de La Rioja, 2013. http://dialnet.unirioja.es/servlet/tesis?codigo=38821
F.A. Potra, On Q-order and R-order of convergence, J. Optim. Theory Appl., 63 (1989) no. 3, 415-431, https://doi.org/10.1007/bf00939805 DOI: https://doi.org/10.1007/BF00939805
Potra, F.A., Ptak, V.: Nondiscrete introduction and iterative processes. Research Notes in Mathematics. ´ 103, Pitman, Boston, MA, 1984.
Pavaloiu, I., Catinas, E.: On a robust Aitken-Newton method based on the Hermite polynomial. Appl. Math. Comput. (2016) (to appear), https://doi.org/10.1016/j.amc.2016.03.036 DOI: https://doi.org/10.1016/j.amc.2016.03.036
Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) pub.3, (19), 129–142 Banach center, Warsaw, Poland. DOI: https://doi.org/10.4064/-3-1-129-142
Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ, (1964) https://doi.org/10.1016/b978-0-12-528550-6.50017-x DOI: https://doi.org/10.1016/B978-0-12-528550-6.50017-X
Published
Issue
Section
License
Copyright (c) 2019 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.