Ball convergence for an Aitken-Newton method

Authors

  • Ioannis K. Argyros Cameron University, USA
  • Munish Kansal Thapar Institute of Engineering and Technology, India
  • Vinay Kanwar Panjab University, India

DOI:

https://doi.org/10.33993/jnaat472-1082

Keywords:

Nonlinear equations, Aitken-Newton method, local convergence, eighth order of convergence
Abstract views: 311

Abstract

We present a local convergence analysis of an eighth-order Aitken-Newton method for approximating a locally unique solution of a nonlinear equation. Earlier studies have shown convergence of these methods under hypotheses up to the eighth derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. This way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.

Downloads

Download data is not yet available.

Author Biography

Ioannis K. Argyros, Cameron University, USA

Full tenured Professor of Mathematics.

References

Adomian, G.: Solving Frontier problem of physics: The decomposition method, Kluwer Academic Publishers, Dordrecht, 1994, https://doi.org/10.1007/978-94-015-8289-6_5 DOI: https://doi.org/10.1007/978-94-015-8289-6

Amat, S., Busquier, S., Guttierrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157 (2003), 197–205, https://doi.org/10.1016/s0377-0427(03)00420-5 DOI: https://doi.org/10.1016/S0377-0427(03)00420-5

Amat, S., Busquier, S., Plaza, S.: Dynamics of the King’s and Jarratt iterations. Aequationes. Math. 69 (2005), 212–213, https://doi.org/10.1007/s00010-004-2733-y DOI: https://doi.org/10.1007/s00010-004-2733-y

Amat, S., Hernandez, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. ´Comput. 206 (1) (2008), 164–174, https://doi.org/10.1016/j.amc.2008.08.050 DOI: https://doi.org/10.1016/j.amc.2008.08.050

Argyros, I.K.: Quadratic equations annd applications to Chandershekhar’s and related equations, Bull Austral. Math. Soc. 32 (1985), 275–292, https://doi.org/10.1017/s0004972700009953 DOI: https://doi.org/10.1017/S0004972700009953

Argyros, I.K. Chen D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12 (2) (1993), 119–128. DOI: https://doi.org/10.22199/S07160917.1993.0002.00002

Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374–397 https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008

Argyros, I.K.: Computational Theory of Iterative Methods, Series: Studies Comput. Math. 15, Editors: C.K. Chui and L. Wuytack, Elsevier, New York, USA, (2007) https://doi.org/10.1016/s1570-579x(07)x8020-0 DOI: https://doi.org/10.1016/S1570-579X(07)X8020-0

Argyros, I.K., Hilout S.: Weaker conditions for the convergence of Newton’s method. J. Complexity. 28 (2012), 364–387 https://doi.org/10.1016/j.jco.2011.12.003 DOI: https://doi.org/10.1016/j.jco.2011.12.003

Argyros, I.K.: Numerical Methods in Nonlinear Analysis. World Scientific Publ. Comp. New Jersey, (2013) DOI: https://doi.org/10.1142/8475

Argyros, I.K., Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weaker conditions. Int. J. Appl. Comput. Math. https://doi.org/10.1007/s40819-015-0078-y DOI: https://doi.org/10.1007/s40819-015-0078-y

W.A. Beyer, B.R. Ebanks, C.R. Qualls, Convergence rates and convergence-order profiles for sequences, Acta Appl. Math., 20 (1990), 267-284, https://doi.org/10.1007/BF00049571 DOI: https://doi.org/10.1007/BF00049571

E. Catinas, A survey on the high convergence orders and computational convergence orders of sequences, Appl. Math. Comput., 343 (2019) 1-20, https://doi.org/10.1016/j.amc.2018.08.006 DOI: https://doi.org/10.1016/j.amc.2018.08.006

Danby, J.M.A., Burkardt, T.M.: The solution of Kepler’s equation. I. Celest. Mech. 31 (1983), 95–107, https://doi.org/10.1007/bf01686811 DOI: https://doi.org/10.1007/BF01686811

Ezquerro, J.A., Hernandez, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer Math. 49 (2009), 325–342 https://doi.org/10.1007/s10543-009-0226-z DOI: https://doi.org/10.1007/s10543-009-0226-z

Guttierrez, J.M., Hernandez, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36 (1998), 1–8, https://doi.org/10.1016/s0898-1221(98)00168-0 DOI: https://doi.org/10.1016/S0898-1221(98)00168-0

Kantrovich L.V., Akilov G.P.: Functional Analysis. Pergamon Press, Oxford, (1982)

Magrenan A.A.: Estudio de la dinamica del metodo de Newton amortiguado (PhD Thesis), Servicio de Publicaciones Universidad de La Rioja, 2013. http://dialnet.unirioja.es/servlet/tesis?codigo=38821

F.A. Potra, On Q-order and R-order of convergence, J. Optim. Theory Appl., 63 (1989) no. 3, 415-431, https://doi.org/10.1007/bf00939805 DOI: https://doi.org/10.1007/BF00939805

Potra, F.A., Ptak, V.: Nondiscrete introduction and iterative processes. Research Notes in Mathematics. ´ 103, Pitman, Boston, MA, 1984.

Pavaloiu, I., Catinas, E.: On a robust Aitken-Newton method based on the Hermite polynomial. Appl. Math. Comput. (2016) (to appear), https://doi.org/10.1016/j.amc.2016.03.036 DOI: https://doi.org/10.1016/j.amc.2016.03.036

Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) pub.3, (19), 129–142 Banach center, Warsaw, Poland. DOI: https://doi.org/10.4064/-3-1-129-142

Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ, (1964) https://doi.org/10.1016/b978-0-12-528550-6.50017-x DOI: https://doi.org/10.1016/B978-0-12-528550-6.50017-X

Downloads

Published

2018-12-31

How to Cite

Argyros, I. K., Kansal, M., & Kanwar, V. (2018). Ball convergence for an Aitken-Newton method. J. Numer. Anal. Approx. Theory, 47(2), 114–123. https://doi.org/10.33993/jnaat472-1082

Issue

Section

Articles