A simplified proof of the Kantorovich theorem for solving equations using telescopic series
DOI:
https://doi.org/10.33993/jnaat442-1084Keywords:
Newton-Kantorovich method, Banach space, majorizing series, telescopic series, Kantorovich theoremAbstract
We extend the applicability of the Kantorovich theorem (KT) for solving nonlinear equations using Newton-Kantorovich method in a Banach space setting. Under the same information but using elementary scalar telescopic majorizing series, we provide a simpler proof for the (KT) [2], [7]. Our results provide at least as precise information on the location of the solution. Numerical examples are also provided in this study.
Downloads
References
I.K. Argyros, Polynomial equations in abstract spaces and applications, St. Lucie/CRC/Lewis Publ. Mathematics Series, 1998, Boca Raton Florida.
I.K. Argyros, Computational theory of iterative methods, Series: Studies in Computational Mathematics 15, Editors, C.K. Chui and L. Wuytack, Elservier Publ. Co. New York, USA, 2007.
S. Chandrasekhar, Radiative Transfer, Dover. Publ, 1960, New York.
P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer-Verlag, Berlin, Heidelberg, 2004.
J.A. Ezquerro, M.A. Hern´andez, New Kantorovich-type conditions for Halley’s method, Appl. Num. Anal. Comp. Math., 2 (2005), pp. 70–77, http://doi.org/10.1002/anac.200410024 DOI: https://doi.org/10.1002/anac.200410024
J.A. Ezquerro, M.A. Hernandez, An optimization of Chebyshev-method, J. Complexity, 25 (2009), pp. 343–361, http://doi.org/10.1016/j.jco.2009.04.001 DOI: https://doi.org/10.1016/j.jco.2009.04.001
L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
J.H. Mathews, Bibligraphy for Newton’s method, Available from: http://mathfaculty.fullerton.edu/mathews/n2003/newtonsmethod/Newton’sMethodBib/Links/Newton’sMethodBiblnk3.html.
Yu. Nesterov, Introductory Lectures on Convex Programming, Kluwer, Boston, 2004. DOI: https://doi.org/10.1007/978-1-4419-8853-9
S.J. Wright, Primal-Dual Interior Point Methods, SIAM, Philadelphia, 1997. DOI: https://doi.org/10.1137/1.9781611971453
T.J. Ypma, Historical developments of the Newton-Raphson method, SIAM Review, 37 (1995), pp. 531–551, https://doi.org/10.1137/1037125 DOI: https://doi.org/10.1137/1037125
Published
Issue
Section
License
Copyright (c) 2016 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
How to Cite
Funding data
-
National Natural Science Foundation of China
Grant numbers 10871178