On \(\alpha\)-convex sequences of higher order

Authors

  • Xhevat Z. Krasniqi University of Prishtina ”Hasan Prishtina”, Albania

DOI:

https://doi.org/10.33993/jnaat452-1093

Keywords:

sequence, convexity, alpha-convexity, starshaped sequence, higher order convexity
Abstract views: 264

Abstract

Many important applications of the class of convex sequences came across in several branches of mathematics as well as their generalizations. In this paper, we have introduced a new class of convex sequences, the class of \(\alpha\)-convex sequences of higher order. In addition, the characterizations of sequences belonging to this class have been shown.

Downloads

Download data is not yet available.

References

H. Bor, A new application of convex sequences, J. Class. Anal.,1 (2012), no. 1, pp. 31-34, http://dx.doi.org/10.7153/jca-01-04 DOI: https://doi.org/10.7153/jca-01-04

H. Bor, Xh. Z. Krasniqi, A note on absolute Ces`aro summability factors, Adv. Pure Appl. Math., 3 (2012), no. 3, pp. 259-264, http://dx.doi.org/10.1515/apam-2012-0005 DOI: https://doi.org/10.1515/apam-2012-0005

Xh. Z. Krasniqi, Some properties of (p,q;r) -convex sequences, Appl. Math. E-Notes,15 (2015), pp. 38-45.

L. M. Kocic, I. Z. Milovanovic, A property of (p,q) -convex sequences, Period. Math. Hungar., 17 (1) (1986), pp. 25-26, http://dx.doi.org/10.1007/BF01848226 DOI: https://doi.org/10.1007/BF01848226

I. B. Lackovic, M. R. Jovanovic, On a class of real sequences which satisfy a difference inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., No. 678-715 (1980), pp. 99-104 (1981).

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, Springer-Verlag London, 2013. DOI: https://doi.org/10.1007/978-1-4471-5122-7

J. E. Pecaric, On some inequalities for convex sequences, Publ. Inst. Math. (Beograd) (N.S.), 33 (47) (1983), pp. 173-178.

F. Qi, B.-N. Guo, Monotonicity of sequences involving convex function and sequence, Math. Inequal. Appl., 9 (2006), no. 2, pp. 247-254, http://dx.doi.org/dx.doi.org/10.7153/mia-09-25 DOI: https://doi.org/10.7153/mia-09-25

Gh. Toader, A hierarchy of convexity for sequences, Anal. Numer. Theor. Approx.,12 (2), 1983, pp. 187-192, http://ictp.acad.ro/jnaat/journal/article/view/1983-vol12-no2-art10

Gh. Toader,α-convex sequences, Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1983), pp. 167-168, Preprint, 83-2, Univ. ”Babes-Bolyai”, Cluj-Napoca, 1983.

Gh. Toader, On the convexity of high order of sequences, Publ. Inst. Math. (Beograd) (N.S.), 43 (57) (1988), pp. 35-40.

Gh. Toader, Starshapedness and superadditivity of high order of sequences. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), pp. 227-234, Preprint, 85-6, Univ. ”Babes-Bolyai”, Cluj-Napoca, 1985, https://doi.org/10.1016/j.camwa.2007.02.005

S. Wu; L. Debnath, Inequalities for convex sequences and their applications, Comput. Math. Appl.,54 (2007), no. 4, pp. 525-534. DOI: https://doi.org/10.1016/j.camwa.2007.02.005

Downloads

Published

2016-12-12

How to Cite

Krasniqi, X. Z. (2016). On \(\alpha\)-convex sequences of higher order. J. Numer. Anal. Approx. Theory, 45(2), 177–182. https://doi.org/10.33993/jnaat452-1093

Issue

Section

Articles