The second Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problem of Schur

Authors

  • Heinz Joachim Rack Dr. Rack Consulting GmbH, Germany

DOI:

https://doi.org/10.33993/jnaat461-1100

Keywords:

Abel's equation, Chebyshev, critical points, elliptic function, Erdos, equioscillation, extremal problem, Grasegger, Markov, Pell's equation, inequality, quintic, Schur, Shadrin, Szego, Zolotarev
Abstract views: 650

Abstract

Schur's [20] Markov-type extremal problem is to determine (i) \(M_n= \sup_{-1\leq \xi\leq 1}\sup_{P_n\in\mathbf{B}_{n,\xi,2}}(|P_n^{(1)}(\xi)| / n^2)\), where \(\mathbf{B}_{n,\xi,2}=\{P_n\in\mathbf{B}_n:P_n^{(2)}(\xi)=0\}\subset \mathbf{B}_n=\{P_n:|P_n(x)|\leq 1 \;\textrm{for}\; |x| \leq 1\}\) and \(P_n\) is an algebraic polynomial of degree \(\leq n\). Erdos and Szego [4] found that for \(n\geq 4\) this maximum is attained if \(\xi=\pm 1\) and \(P_n\in\mathbf{B}_{n,\pm 1,2}\) is a (unspecified) member of the one-parameter family of hard-core Zolotarev polynomials. An extremal such polynomial as well as the constant \(M_n\) we have explicitly specified for \(n=4\) in [17], and in this paper we strive to obtain an analogous amendment to the Erdos-Szego solution for \(n = 5\). The cases \(n>5\) still remain arcane.
Our approach is based on the quite recently discovered explicit algebraic power form representation [6], [7] of the quintic hard-core Zolotarev polynomial, \(Z_{5,t}\), to which we add here explicit descriptions of its critical points, the explicit form of Pell's (aka: Abel's) equation, as well as an alternative proof for the range of the parameter, \(t\). The optimal \(t=t^*\) which yields \(M_5 = |Z_{5,t^*}^{(1)}(1)|/25\) we identify as the negative zero with smallest modulus of a minimal \(P_{10}\). We then turn to an extension of (i), to higher derivatives as proposed by Shadrin [22], and we provide an analogous solution for \(n=5\). Finally, we describe, again for \(n = 5\), two new algebraic approaches towards a solution to Zolotarev's so-called first problem [2], [24] which was originally solved by means of elliptic functions.

Downloads

Download data is not yet available.

References

N. I. Achieser, Theory of Approximation, Dover Publications, Mineola N.Y., 2003 (Russian 1947).

B. C. Carlson, J. Todd, Zolotarev’s first problem - the best approximation by polynomials of degree ≤n−2 to xn−nσx n−1 in [−1,1], Aeq. Math., 26 (1983), pp. 1-33, https://doi.org/10.1007/BF02189661 DOI: https://doi.org/10.1007/BF02189661

G. E. Collins, Application of quantifier elimination to Solotareff’s approximation problem, in: Stability Theory: Hurwitz Centenary Conference, (R. Jeltsch et al., eds.), Ascona 1995, Birkhauser Verlag, Basel, 1996 (ISNM 121), 181-190, https://doi.org/10.1007/978-3-0348-9208-7_19 DOI: https://doi.org/10.1007/978-3-0348-9208-7_19

P. Erdos, G. Szego, On a problem of I. Schur, Ann. Math. 43 (1942), pp. 451-470, https://doi.org/10.2307/1968803 DOI: https://doi.org/10.2307/1968803

S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge (UK), 2003 (EMA 94).

G. Grasegger, N. Th. Vo, An algebraic-geometric method for computing Zolotarev polynomials, Technical report no. 16-02, RISC Report Series, Johannes Kepler University, Linz, Austria, 2016, pp. 1–17. URL http://www.risc.jku.at/publications/download/risc_5271/RISCReport1602.pdf

G. Grasegger, An algebraic-geometric method for computing Zolotarev polynomials - Additional information, Technical report no. 16-07, RISC Report Series, Johannes Kepler University, Linz, Austria, 2016, pp. 1-12. URL http://www.risc.jku.at/publications/download/risc_5340/RISC1607.pdf

E. Kaltofen, Chal lenges of symbolic computation: My favorite open problems. With an additional open problem by Robert M. Corless and David J. Jeffrey, J. Symb. Comput. 29 (2000), pp. 891-919, DOI: https://doi.org/10.1006/jsco.2000.0370

D. Lazard, Solving Kaltofen’s chal lenge on Zolotarev’s approximation problem, in: Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC, Genoa, Italy, 2006), ACM, New York, 2006, pp. 196-203, https://doi.org/10.1145/1145768.1145803 DOI: https://doi.org/10.1145/1145768.1145803

V. I. Lebedev, Zolotarev polynomials and extremum problems, Russ. J. Numer. Anal. Math. Model. 9 (1994), pp. 231-263, https://doi.org/10.1515/rnam.1994.9.3.231 DOI: https://doi.org/10.1515/rnam.1994.9.3.231

V. A. Malyshev, The Abel equation, St. Petersburg Math. J. 13 (2002), pp. 893-938 (Russian 2001).

A. A. Markov, On a question of D. I. Mendeleev, Zapiski. Imper. Akad. Nauk., St. Petersburg, 62 (1889), pp. 1-24 (Russian). URL www.math.technion.ac.il/hat/fpapers/mar1.pdf

V. A. Markov, On functions deviating least from zero in a given interval, Izdat. Akad. Nauk., St. Petersburg, 1892, iv + 111 (Russian). URL www.math.technion.ac.il/hat/fpapers/vmar.pdf

W. Markoff, Uber Polynome, die in einem gegebenen Interval le moglichst wenig von Nul l abweichen, Math. Ann. 77 (1916), pp. 213-258. (Abridged German translation of [13]), https://doi.org/10.1007/BF01456902 DOI: https://doi.org/10.1007/BF01456902

G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994, https://doi.org/10.1142/1284 DOI: https://doi.org/10.1142/1284

F. Peherstorfer, K. Schiefermayr, Description of extremal polynomials on several intervals and their computation. II, Acta Math. Hungar. 83 (1999), pp. 59-83, https://doi.org/10.1023/A:1006659402649 DOI: https://doi.org/10.1023/A:1006659402649

H.-J. Rack, On polynomials with largest coefficient sums, J. Approx. Theory 56 (1989), pp. 348-359, https://doi.org/10.1016/0021-9045(89)90124-X DOI: https://doi.org/10.1016/0021-9045(89)90124-X

H.-J. Rack, The first Zolotarev case in the Erdos-Szego solution to a Markov-type extremal problem of Schur, Stud. Univ. Babes-Bolyai Math. 62 (2017), pp. 151-162. DOI: https://doi.org/10.24193/subbmath.2017.2.02

Th. J. Rivlin, Chebyshev Polynomials, 2nd ed., Wiley, New York, 1990.

K. Schiefermayr, Inverse polynomial images which consists of two Jordan arcs – An algebraic solution, J. Approx Theory 148 (2007), pp. 148-157, https://doi.org/10.1016/j.jat.2007.03.003 DOI: https://doi.org/10.1016/j.jat.2007.03.003

I. Schur, Uber das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Interval l, Math. Z., 4 (1919), pp. 271-287, https://doi.org/10.1007/BF01203015 DOI: https://doi.org/10.1007/BF01203015

A. Shadrin, Twelve proofs of the Markov inequality, in: Approximation Theory: A volume dedicated to Borislav Bojanov (D. K. Dimitrov et al., eds.), M. Drinov Acad. Publ. House, Sofia, 2004, pp. 233-298.

A. Shadrin, The Landau-Kolmogorov inequality revisited, Discrete Contin. Dyn. Syst., 34

(2014), pp. 1183-1210, https://doi.org/10.3934/dcds.2014.34.1183 DOI: https://doi.org/10.3934/dcds.2014.34.1183

M. L. Sodin, P. M. Yuditskii, Algebraic solution of a problem of E. I. Zolotarev and N. I. Akhiezer on polynomials with smallest deviation from zero, J. Math. Sci. 76 (1995), pp. 2486-2492 (Russian 1991). DOI: https://doi.org/10.1007/BF02364906

E. I. Zolotarev, Applications of el liptic functions to problems of functions deviating least and most from zero, Zapiski Imper. Akad. Nauk, St.Petersburg, 30 (1877), Oeuvres vol. 2, pp. 1–59 (Russian). URL http://www.math.technion.ac.il/hat/fpapers/zolo1.pdf

G. Graesegger, N. Th. Vo, An algebraic-geometric method for computing Zolotarev polynomials, in: Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC, Kaiserslautern, Germany, 2017), ACM, New York, 2017, pp. 173-18 DOI: https://doi.org/10.1145/3087604.3087613

Downloads

Published

2017-09-21

Issue

Section

Articles

How to Cite

Rack, H. J. (2017). The second Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problem of Schur. J. Numer. Anal. Approx. Theory, 46(1), 54-77. https://doi.org/10.33993/jnaat461-1100