A comment on Ewald Quak's ``"About B-splines"
DOI:
https://doi.org/10.33993/jnaat451-1101Keywords:
B-spline, B-spline recurrence, Marsden's identity, knot insertion, Popoviciu, ChakalovAbstract
The early contributions to B-spline theory by Tiberiu Popoviciu and by Liubomir Chakalov are recalled.
Downloads
References
[B80] W. Boehm, Inserting new knots into B-spline curves, Computer-Aided Design, 12 (1980) no. 4, pp.199-201, http://dx.doi.org/10.1016/0010-4485(80)90154-2 DOI: https://doi.org/10.1016/0010-4485(80)90154-2
[BP03] C. de Boor and A. Pinkus, The B-spline recurrence relations of Chakalov and of Popoviciu, J. Approx. Theory, 124 (2003) no. 1, pp.115-123, http://dx.doi.org/10.1016/S0021-9045(03)00117-5 DOI: https://doi.org/10.1016/S0021-9045(03)00117-5
[C38] L. Chakalov, On a certain presentation of the Newton divided differences in interpolation theory and it applications, Annuaire Univ. Sofia, Fiz. Mat. Fakultet, 34 (1938), pp.353-394 (in Bulgarian).
[Ma70] M.J. Marsden, An identity for spline functions with applications to variation-diminishing spline approximation, J. Approx. Theory, 3 (1970), pp.7-49, http://dx.doi.org/10.1016/0021-9045(70)90058-4 DOI: https://doi.org/10.1016/0021-9045(70)90058-4
[Me74] G. Meinardus, Bemerkungen zur Theorie der B-Splines, in Spline-Funktionen (K. Bohmer, G. Meinardus, and W. Schempp Eds.), Bibliographisches Institut (Mannheim), 1974, pp.165-175.
[P34a] T. Popoviciu, Sur quelques proprietes des fonctions d’une ou de deux variables reel les, Mathematica, 8 (1934), pp.1-85. Retrieved on October 3rd, 2016, from http://ictp.acad.ro/popoviciu
[P34b] T. Popoviciu, Sur le prolongement des fonctions convexes d’ordre superieur, Bull. Math. Soc. Roumaine des Sc.,36 (1934), pp.75-108. Retrieved on October 3rd, 2016, from http://ictp.acad.ro/popoviciu
[Q] E. Quak, About B-splines. Twenty answers to one question: What is the cubic B-spline for the knots -2,-1,0,1,2?, J. Numer. Anal. Approx. Theory, 45 (2016) no. 1, pp.37-83, http://ictp.acad.ro/jnaat/journal/issue/view/2016-vol45-no1 DOI: https://doi.org/10.33993/jnaat451-1099
[S64] I.J. Schoenberg, Spline functions and the problem of graduation, Proc. Amer. Math. Soc., 52 (1964), pp.947-950, http://dx.doi.org/10.1073/pnas.52.4.947 DOI: https://doi.org/10.1073/pnas.52.4.947
Published
Issue
Section
License
Copyright (c) 2016 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.