Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations
DOI:
https://doi.org/10.33993/jnaat451-1102Keywords:
Gauss-Newton method, Newton method, semilocal convergence, least squares problemAbstract
We present a new semilocal convergence analysis of the Gauss-Newton method in order to solve a certain class of systems of equations under a majorant condition. Using a center majorant function as well as a majorant function and under the same computational cost as in earlier studies such as [11]-[13], we present a semilocal convergence analysis with the following advantages: weaker sufficient convergence conditions; tighter error estimates on the distances involved and an at least as precise information on the location of the solution. Special cases and applications complete this study.
Downloads
References
I. Argyros, On the semilocal convergence of the Gauss-Newton method, Adv. Nonlinear Var. Inequal., 8 (2005) 2, pp. 93-99.
I. Argyros and S. Hilout, On the local convergence of the Gauss-Newton method, Punjab Univ. J. Math., 41 (2009), pp. 23-33.
I. Argyros and S. Hilout, On the Gauss-Newton method, J. Appl. Math. Comput., 35 (2011), pp. 537–550, http://dx.doi.org/10.1007/s12190-010-0377-8 DOI: https://doi.org/10.1007/s12190-010-0377-8
I. Argyros and S. Hilout, Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions, Numer. Algor., 58 (2011) 1, pp. 23-52, http://dx.doi.org/10.1007/s11075-011-9446-9 DOI: https://doi.org/10.1007/s11075-011-9446-9
I. Argyros and S. Hilout, Improved local convergence of Newton’s method under weak majorant condition, J. Comp. Appl. Math., 236 (2012) 7, pp. 1892-1902, http://dx.doi.org/10.1016/j.cam.2011.10.021 DOI: https://doi.org/10.1016/j.cam.2011.10.021
I. Argyros and S. Hilout, Numerical methods in nonlinear analysis, World Scientific Publ. Comp. New Jersey, USA, 2013. DOI: https://doi.org/10.1142/8475
A. Ben-Israel and T.N.E. Greville, Generalized inverses, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 15. Springer-Verlag, New York, 2nd ed., Theory and Applications, 2003.
E. Catinas, The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comput., 74 (2005) 249, pp. 291-301, http://dx.doi.org/10.1090/S0025-5718-04-01646-1 DOI: https://doi.org/10.1090/S0025-5718-04-01646-1
J.P. Dedieu and M.H. Kim, Newton’s method for analytic systems of equations with constant rank derivatives, J. Complexity, 18, (2002) 1, pp. 187-209, http://dx.doi.org/10.1006/jcom.2001.0612 DOI: https://doi.org/10.1006/jcom.2001.0612
O.P. Ferreira, M.L.N. Goncalves and P.R. Oliveira, Local convergence analysis of inexact Gauss-Newton like methods under majorant condition, J. Complexity, 27 (2011) 1, pp. 111-125, http://dx.doi.org/10.1016/j.jco.2010.09.001 DOI: https://doi.org/10.1016/j.jco.2010.09.001
O.P. Ferreira and B.F. Svaiter, Kantorovich’s majorants principle for Newton’s method, Comput. Optim. Appl., 42 (2009) 2, pp. 213-229, http://dx.doi.org/10.1007/s10589-007-9082-4 DOI: https://doi.org/10.1007/s10589-007-9082-4
W.M. Haussler, A Kantorovich-type convergence analysis for the Gauss-Newton Method, Numer. Math., 48 (1986) 1, pp. 119-125, http://dx.doi.org/10.1007/BF01389446 DOI: https://doi.org/10.1007/BF01389446
M.L.N. Goncalves and P.R. Oliveira, Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition, Optimization, 64 (2015) 3, pp. 577-594, http://dx.doi.org/10.1080/02331934.2013.778854 DOI: https://doi.org/10.1080/02331934.2013.778854
N. Hu, W. Shen and C. Li, Kantorovich’s type theorems for systems of equations with constant rank derivatives , J. Comput. Appl. Math., 219 (2008) 1, pp. 110-122, http://dx.doi.org/10.1016/j.cam.2007.07.006 DOI: https://doi.org/10.1016/j.cam.2007.07.006
L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
C. Li, N. Hu and J. Wang, Convergence behavior of Gauss-Newton’s method and extensions of the Smale point estimate theory. J. Complexity, 26 (2010) 3, pp. 268-295, http://dx.doi.org/10.1016/j.jco.2010.02.001 DOI: https://doi.org/10.1016/j.jco.2010.02.001
F.A. Potra and V. Ptak, Nondiscrete induction and iterative processes, Research notes in Mathematics, 103, Pitman (Advanced Publishing Program), Boston, MA, 1984.
S. Smale, Newton’s method estimates from data at one point. The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985), pp. 185-196, Springer, New York, 1986. DOI: https://doi.org/10.1007/978-1-4612-4984-9_13
X.H. Wang, Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces, IMA J. Numer. Anal., 20 (2000), pp. 123-134, http://dx.doi.org/10.1093/imanum/20.1.123 DOI: https://doi.org/10.1093/imanum/20.1.123
Published
Issue
Section
License
Copyright (c) 2017 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.