Accelerating the convergence of Newton-type iterations
DOI:
https://doi.org/10.33993/jnaat462-1105Keywords:
Newton-type iterations, accelerating procedure, convergence order, efficiency indexAbstract
In this paper, we present a new accelerating procedure in order to speed up the convergence of Newton-type methods. In particular, we derive iterations with a high and optimal order of convergence. This technique can be applied to any iteration with a low order of convergence.
As expected, the convergence of the proposed methods was remarkably fast. The effectiveness of this technique is illustrated by numerical experiments.
Downloads
References
W. Bi, H. Ren, Q. Wu, Three-step iterative methods with eighth-order convergence for solving nonlinear equations, J. Comput. Appl. Math., 225 (2009), pp. 105-112, https://doi.org/10.1016/j.cam.2008.07.004 DOI: https://doi.org/10.1016/j.cam.2008.07.004
A. Cordero, J.L. Hueso, E. Martinez, J. R. Torregrosa, New modifications of Potra-Ptak’s method with optimal fourth and eighth orders of convergence, J. Comput. Appl. Math., 234 (2010), pp. 2969-2976. DOI: https://doi.org/10.1016/j.cam.2010.04.009
A. Cordero, J.R. Torregrosa, M.P. Vassileva, Three-step iterative methods with optimal eighthorder convergence, J. Comput. Appl. Math., 235 (2011), pp. 3189-3194, https://doi.org/10.1016/j.cam.2010.04.009 DOI: https://doi.org/10.1016/j.cam.2011.01.004
J.A. Ezquerro, M.A. Hernandez, N. Romero, A.I. Velasco, Improving the domain of starting points for secant-like methods, Appl. Math. Comput., 219 (2012), pp. 3677-3692, https://doi.org/10.1016/j.amc.2012.09.070 DOI: https://doi.org/10.1016/j.amc.2012.09.070
L. Fang, G. He, Some modifications of Newton’s method with higher-order convergence for solving nonlinear equations, J. Comput. Appl. Math., 228 (2009), pp. 296-303, https://doi.org/10.1016/j.cam.2008.09.023 DOI: https://doi.org/10.1016/j.cam.2008.09.023
M.A. Hernandez, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence for the Chebyshev method , Comput. Appl. Math., 126 (2000), pp. 131-143, https://doi.org/10.1016/S0377-0427(99)00347-7 DOI: https://doi.org/10.1016/S0377-0427(99)00347-7
L. Liu and X. Wang, Eighth-order methods with high efficiency index for solving nonlinear equations, Appl. Math. Comput., 215 (2010), pp. 3449-3454, https://doi.org/10.1016/j.amc.2009.10.040 DOI: https://doi.org/10.1016/j.amc.2009.10.040
I. Pavaloiu, E. Catinas, Bilateral approximations for some Aitken-Steffensen-Hermite type methods of order three, Appl. Math. Comput., 217 (2011), pp. 5838-5846, https://doi.org/10.1016/j.amc.2010.12.067 DOI: https://doi.org/10.1016/j.amc.2010.12.067
B.M. Podlevskii, On certain two-sided analogues of Newton’s method for solving non-linear eigenvalue problems, Comput. Math. Math. Phys.,47 (2007), pp. 1745-1755, https://doi.org/10.1134/s0965542507110024 DOI: https://doi.org/10.1134/S0965542507110024
H.I. Siyyam, M.T. Shatnawi, I.A. Al-Subaihi, A new one parameter family of iterative methods with eighth-order of convergence for solving nonlinear equations, Inter. J. Pure. Appl. Math., 84 (2013), pp. 451-461, https://doi.org/10.12732/ijpam.v84i5.1 DOI: https://doi.org/10.12732/ijpam.v84i5.1
J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations, Appl. Math. Comput., 222 (2013), pp. 497-506, https://doi.org/10.1016/j.amc.2013.07.066 DOI: https://doi.org/10.1016/j.amc.2013.07.066
R. Thukral, M.S. Petkovic, A family of three-point methods of optimal order for solving nonlinear equations, J. Comput. Appl. Math.,233 (2010), pp. 2278-2284, https://doi.org/10.1016/j.cam.2009.10.012 DOI: https://doi.org/10.1016/j.cam.2009.10.012
X. Wang, T. Zhang, A new family of Newton-type iterative methods with and without memory for solving nonlinear equations, Calcolo 51 (2014), pp. 1-15, https://doi.org/10.1007/s10092-012-0072-2 DOI: https://doi.org/10.1007/s10092-012-0072-2
S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett., 13 (8) (2000), pp. 87-93, https://doi.org/10.1016/S0893-9659(00)00100-2 DOI: https://doi.org/10.1016/S0893-9659(00)00100-2
T. Zhanlav, Note on the cubic decreasing region of the Chebyshev method, J. Comput. Appl. Math., 235 (2010), pp. 341-344, https://doi.org/10.1016/j.cam.2010.05.034 DOI: https://doi.org/10.1016/j.cam.2010.05.034
T. Zhanlav, O. Chuluunbaatar, Some iteration methods with high order convergence for nonlinear equations, Bulleten of PFUR, Series Mathematics.Information sciences. Physics, 4 (2009), pp. 47-55.
T. Zhanlav, O. Chuluunbaatar, Convergence of the continuous analogy of Newton’s method for solving nonlinear equations, Numerical methods and programming, Moscow State University,10 (2009) pp. 402-407.
T. Zhanlav, O. Chuluunbaatar, V. Ulziibayar, Two-sided approximation for some Newton’s type methods, Appl. Math. Comput., 236 (2014), pp. 239-246, https://doi.org/10.1016/j.amc.2014.03.068 DOI: https://doi.org/10.1016/j.amc.2014.03.068
T. Zhanlav, D. Khongorzul, On convergence behavior of combined iterative method for solving nonlinear equations, Comput. Math. Math. Phys.,52 (2012), pp. 790-800.
T. Zhanlav, I.V. Puzynin, The convergence of iteration based on a continuous analogue of Newton’s method, Comput. Math and Math Phys.,32 (1992), pp. 729-737.
Published
Issue
Section
License
Copyright (c) 2017 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
How to Cite
Funding data
-
Mongolian Foundation for Science and Technology
Grant numbers SST_007/2015 -
Joint Institute for Nuclear Research