Some applications of quadrature rules for mappings on \(L_p[u,v]\) space via Ostrowski-type inequality
DOI:
https://doi.org/10.33993/jnaat462-1107Keywords:
Ostrowski inequality, Lp space, bounded variation, numerical integration, sharp boundsAbstract
Some Ostrowski-type inequalities are stated for \(L_p[u,v]\) spaces and for mappings of bounded variations. Applications are also given for obtaining error bounds of some composite quadrature formulae.
Downloads
References
M. W. Alomari, A Companion of Dragomir’s Generalization of the Ostrowski inequality and Applications to Numerical integration, Ukrainian Mathematical Journal, 64 (4), (2012), pp. 491-509, DOI: https://doi.org/10.1007/s11253-012-0661-x
P. L. Chebyshev, Sur les expressions approximative des integrals par les auters prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), pp. 93-98.
S. S. Dragomir and S.Wang, An inequality of Ostrowski-Gr ̈uss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33 (1997), pp. 15-20, DOI: https://doi.org/10.1016/S0898-1221(97)00084-9
S. S. Dragomir, A Companion of Ostrowski’s Inequality for functions of Bounded Variation and Applications, Int. J. Nonlinear Anal. Appl., 5 (2014), pp. 89-97.
G. Gruss, Uber das Maximum des absoluten Betragesvon 1(b−a)∫baf(x)g(x)dx−1(b−a)2×∫bf(x)dx∫bag(x)dx , Math. Z., 39 (1935), pp. 215-226. DOI: https://doi.org/10.1007/BF01201355
Asif R. Khan, Josip Pecaric and M. Praljak, Weighted Montgomery inequalities for higher order differentiable functions of two variables, Rev. Anal. Numer. Theor. Approx., 42 (1) (2013), pp. 49-71.
Mohammas Masjed-Jamei and Severs. Dragomir Generalization of Ostrowski-Gruss Inequality, World Scientific, 12 (2) (2014), pp. 117-130, DOI: https://doi.org/10.1142/S0219530513500309
G. V. Milovanovic, On some integral inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 498–541 (1975), pp. 119-124.
G.V. Milovanovic, J. E. Pecaric, On generalization of the inequality of A. Ostrowski and some related applications, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 544-576 (1976), pp. 155-158.
A. M. Ostrowski, Uber die absolutabweichung einer differentiebaren funktion von ihren integralmittelwert, Comment. Math. Helv., 10 (1938), pp. 226-227, DOI: https://doi.org/10.1007/BF01214290
Richard L. Wheeden and Antoni Zygmund, Measure and Integral, Marcel Dekker. Inc, New York, 1977. DOI: https://doi.org/10.1201/b15702
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.