Approximation theorems for Kantorovich type Lupaș-Stancu operators based on \(q\)-integers

Authors

  • Sevilay Kirci Serenbay Baskent University, Department of Mathematics Education, Turkey
  • Özge Dalmanoğlu Baskent University, Department of Mathematics Education, Turkey

DOI:

https://doi.org/10.33993/jnaat461-1108

Keywords:

Lupas-Kantorovich operators, modulus of continuity, Peetre's K-functional, q-integers, rate of convergence, statistical approximation
Abstract views: 437

Abstract

In this paper, we introduce a Kantorovich generalization of q-Stancu-Lupa¸s operators and investigate their approximation properties. The rate of convergence of these operators are obtained by means of modulus of continuity, functions of Lipschitz class and Peetre's K-functional. We also investigate the convergence of the operators in the statistical sense and give a numerical example in order to estimate the error in the approximation.

Downloads

Download data is not yet available.

References

A.M. Acu, D. Barbosu and D.F. Sofonea, Note on a q-analogue of Stancu-Kantorovich operators, Miskolc Mathematical Notes, 16 (2015) 1, pp. 3-15. DOI: https://doi.org/10.18514/MMN.2015.1221

A.M. Acu, Stancu-Schurer-Kantorovich operators based on q-integers, Applied Mathematics and Computation, 259 (2015), pp. 896-907. DOI: https://doi.org/10.1016/j.amc.2015.03.032

P.N. Agrawal, N. Ispir and A. Kajla Approximation properties of Lupas-Kantorovich operators based on Polya distribution, Rend. Circ. Mat. Palermo (2016) 65: pp. 185-208, https://doi.org/10.1007/s1221 DOI: https://doi.org/10.1007/s12215-015-0228-4

A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, Berlin, 2013. DOI: https://doi.org/10.1007/978-1-4614-6946-9

O. Dogru and K. Kanat, Statistical approximation properties of King-type modification of Lupas operators, Comput. Math. Appl., 64 (2012) pp. 511-517, https://doi.org/10.1016/j.camwa.2011.12.033 DOI: https://doi.org/10.1016/j.camwa.2011.12.033

O. Dogru and K. Kanat, On statistical approximation properties of the Kantorovich type Lupas operators, Mathematical and Computer Modelling, 55, 3-4, (2012), pp. 1610-1621, https://doi.org/10.1016/j.mcm.2011.10.059 DOI: https://doi.org/10.1016/j.mcm.2011.10.059

O. Dogru, G. Icoz and K. Kanat, On the rates of convergence of the q-Lupas-Stancu operators, Filomat 30:5 (2016), pp. 1151-1160, http://www.jstor.org/stable/24898690 DOI: https://doi.org/10.2298/FIL1605151D

H. Fast, Sur la convergence statistique, Colloq. Math Studia Mathematica, 2 (1951), pp. 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244

A.D. Gadjiev and C. Orhan, Some approximation properties via statistical convergence, Rocky Mountain J. Math., 32 (2002), pp. 129-138. DOI: https://doi.org/10.1216/rmjm/1030539612

V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York-Berlin-Heidelberg, 1953.

R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

A. Lupas, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, 9 (1987), pp. 85-92.

N.I. Mahmudov and P. Sabancıgil, Approximation theorems for q-Bernstein-Kantorovich operators, Filomat 27:4 (2013) pp. 721-730. DOI: https://doi.org/10.2298/FIL1304721M

N.I. Mahmudov and P. Sabancıgil, Voronovskaja type theorem for the Lupas q-analogue of the Bernstein operators, Math. Commun. 17, (2012) pp. 83-91.

Niven I., Zuckerman H.S. and Montgomery H. An Introduction to the Theory of Numbers, 5th edition, Wiley, New York, 1991.

S. Ostrovska, On the Lupas q-analogue of the Bernstein operator, Rocky Mountain J. Math., 36 5 (2006), pp. 1615-1629. DOI: https://doi.org/10.1216/rmjm/1181069386

M.A. Ozarslan and T. Vedi, q-Bernstein-Schurer-Kantorovich operators, J. Ineq. Appl.,(2013) p. 444. DOI: https://doi.org/10.1186/1029-242X-2013-444

Downloads

Published

2017-09-21

How to Cite

Serenbay, S. K., & Dalmanoğlu, Özge. (2017). Approximation theorems for Kantorovich type Lupaș-Stancu operators based on \(q\)-integers. J. Numer. Anal. Approx. Theory, 46(1), 78–92. https://doi.org/10.33993/jnaat461-1108

Issue

Section

Articles