Approximation theorems for Kantorovich type Lupaș-Stancu operators based on \(q\)-integers
DOI:
https://doi.org/10.33993/jnaat461-1108Keywords:
Lupas-Kantorovich operators, modulus of continuity, Peetre's K-functional, q-integers, rate of convergence, statistical approximationAbstract
In this paper, we introduce a Kantorovich generalization of q-Stancu-Lupa¸s operators and investigate their approximation properties. The rate of convergence of these operators are obtained by means of modulus of continuity, functions of Lipschitz class and Peetre's K-functional. We also investigate the convergence of the operators in the statistical sense and give a numerical example in order to estimate the error in the approximation.
Downloads
References
A.M. Acu, D. Barbosu and D.F. Sofonea, Note on a q-analogue of Stancu-Kantorovich operators, Miskolc Mathematical Notes, 16 (2015) 1, pp. 3-15. DOI: https://doi.org/10.18514/MMN.2015.1221
A.M. Acu, Stancu-Schurer-Kantorovich operators based on q-integers, Applied Mathematics and Computation, 259 (2015), pp. 896-907. DOI: https://doi.org/10.1016/j.amc.2015.03.032
P.N. Agrawal, N. Ispir and A. Kajla Approximation properties of Lupas-Kantorovich operators based on Polya distribution, Rend. Circ. Mat. Palermo (2016) 65: pp. 185-208, https://doi.org/10.1007/s1221 DOI: https://doi.org/10.1007/s12215-015-0228-4
A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, Berlin, 2013. DOI: https://doi.org/10.1007/978-1-4614-6946-9
O. Dogru and K. Kanat, Statistical approximation properties of King-type modification of Lupas operators, Comput. Math. Appl., 64 (2012) pp. 511-517, https://doi.org/10.1016/j.camwa.2011.12.033 DOI: https://doi.org/10.1016/j.camwa.2011.12.033
O. Dogru and K. Kanat, On statistical approximation properties of the Kantorovich type Lupas operators, Mathematical and Computer Modelling, 55, 3-4, (2012), pp. 1610-1621, https://doi.org/10.1016/j.mcm.2011.10.059 DOI: https://doi.org/10.1016/j.mcm.2011.10.059
O. Dogru, G. Icoz and K. Kanat, On the rates of convergence of the q-Lupas-Stancu operators, Filomat 30:5 (2016), pp. 1151-1160, http://www.jstor.org/stable/24898690 DOI: https://doi.org/10.2298/FIL1605151D
H. Fast, Sur la convergence statistique, Colloq. Math Studia Mathematica, 2 (1951), pp. 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244
A.D. Gadjiev and C. Orhan, Some approximation properties via statistical convergence, Rocky Mountain J. Math., 32 (2002), pp. 129-138. DOI: https://doi.org/10.1216/rmjm/1030539612
V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York-Berlin-Heidelberg, 1953.
R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
A. Lupas, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, 9 (1987), pp. 85-92.
N.I. Mahmudov and P. Sabancıgil, Approximation theorems for q-Bernstein-Kantorovich operators, Filomat 27:4 (2013) pp. 721-730. DOI: https://doi.org/10.2298/FIL1304721M
N.I. Mahmudov and P. Sabancıgil, Voronovskaja type theorem for the Lupas q-analogue of the Bernstein operators, Math. Commun. 17, (2012) pp. 83-91.
Niven I., Zuckerman H.S. and Montgomery H. An Introduction to the Theory of Numbers, 5th edition, Wiley, New York, 1991.
S. Ostrovska, On the Lupas q-analogue of the Bernstein operator, Rocky Mountain J. Math., 36 5 (2006), pp. 1615-1629. DOI: https://doi.org/10.1216/rmjm/1181069386
M.A. Ozarslan and T. Vedi, q-Bernstein-Schurer-Kantorovich operators, J. Ineq. Appl.,(2013) p. 444. DOI: https://doi.org/10.1186/1029-242X-2013-444
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.