On Baskakov operators preserving the exponential function
DOI:
https://doi.org/10.33993/jnaat462-1110Keywords:
Baskakov operators, King type operators, Voronovskaya type theorems, modulus of continuityAbstract
In this paper, we are concerned about the King-type Baskakov operators defined by means of the preserving functions \(e_{0}\) and \(e^{2ax},\ a>0\) fixed.
Using the modulus of continuity, we show the uniform convergence of new operators to \(f\). Also, by analyzing the asymptotic behavior of King-type operators with a Voronovskaya-type theorem, we establish shape preserving properties using the generalized convexity.
Downloads
References
T. Acar, A. Aral and H. Gonska, On Szasz-Mirakyan operators preserving e2ax, a >0, Mediterranean J. Math., 14 (2017) no. 1, pp. 400-408, https://doi.org/10.1007/s00009-016-0804-7 DOI: https://doi.org/10.1007/s00009-016-0804-7
O. Agratini, Uniform approximation of some classes of linear positive operators expressed by series, Applicable Analysis, 94 (2015) no. 8, pp. 1662-1669, https://doi.org/10.1080/00036811.2014.940919 DOI: https://doi.org/10.1080/00036811.2014.940919
O. Agratini, Approximation properties of a class of linear operators, Math. Methods Appl. Sci., 36 (2013) no. 17, pp. 2353-2358, https://doi.org/10.1002/mma.2758 DOI: https://doi.org/10.1002/mma.2758
O. Agratini and S. Tarabie, On approximating operators preserving certain polynomials, Automat. Comput. Appl. Math.,17(2008) no. 2 , pp. 191-199.
J. M. Aldaz and H. Render, Optimality of generalized Bernstein operators, J. Approx. Theory, 162 (2010) no. 7 , pp. 1407-1416, https://doi.org/10.1016/j.jat.2010.03.003 DOI: https://doi.org/10.1016/j.jat.2010.03.003
A. Aral, D. Inoan and I. Rasa, On the generalized Szasz-Mirakyan operators, Results in Math, 65 (2014) no. 3-4 , pp. 441-452, https://doi.org/10.1007/s00025-013-0356-0 DOI: https://doi.org/10.1007/s00025-013-0356-0
V.A. Baskakov, An example of sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 113 (1957), pp. 249-251.
P. I. Braica, L I. Piscoran and A. Indrea, Grafical structure of some King type operators , Acta Universitatis Apulensis, (2014) no. 34 , pp. 163-171.
M. Birou, A note about some general King-type operators, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 12 (2014), pp. 3-16.
B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. Roum., 14 (62) (1970) no. 1 , pp. 9-13.
D. Cardenas-Morales, P. Garrancho and F.J. Munoz-Delgado, Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput, 182 (2006) no. 2 , pp. 1615-1622, https://doi.org/10.1016/j.amc.2006.05.046 DOI: https://doi.org/10.1016/j.amc.2006.05.046
D. Cardenas-Morales, P. Garrancho and I. Rasa, Approximation properties of Bernstein Durrmeyer type operators, Appl. Math. Comput, 232 (2014), pp. 1-8, https://doi.org/10.1016/j.amc.2014.01.046 DOI: https://doi.org/10.1016/j.amc.2014.01.046
J. de la Cal and J. Carcamo, On uniform approximation by some classical Bernstein-type operators, J. Math. Anal. Appl, 279 (2003) no. 2, pp. 625-638, https://doi.org/10.1016/s0022-247x(03)00048-9 DOI: https://doi.org/10.1016/S0022-247X(03)00048-9
W. Z. Chen, Approximation Theory of Operators, Xiamen University Publishing House, Xiamen, China, 1989.
O. Duman and M. Ali Ozarslan, Szasz- Mirakyan type operators providing a better error estimation, Appl. Math. Lett, 20 (2007) no. 12 , pp. 1184-1188, https://doi.org/10.1016/j.aml.2006.10.007 DOI: https://doi.org/10.1016/j.aml.2006.10.007
V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham. 2014, https://doi.org/10.1007/978-3-319-02765-4 DOI: https://doi.org/10.1007/978-3-319-02765-4
V. Gupta, N. Malik and Th. M. Rassias, Moment generating functions and moments of linear positive operators, Modern Discrete Mathematics and Analysis (Edited by N. J. Daras and Th. M. Rassias), Springer 2017. DOI: https://doi.org/10.1007/978-3-319-74325-7_8
V. Gupta and G. Tachev, Approximation with Positive Linear Operators and Linear Combinations, Springer 2017, https://doi.org/10.1007/978-3-319-58795-0 DOI: https://doi.org/10.1007/978-3-319-58795-0
A. Holhos, The rate of approximation of functions in an infinite interval by positive linear operators, Studia Univ. ”Babes-Bolyai”, Mathematica, 55 (2010) no. 2 , pp. 133-142.
N. Ispir, On modified Baskakov operators on weighted spaces, Turk J. Math, 25 (2001) no. 3 , pp. 355-365.
J.P. King, Positive linear operators which preserve x2, Acta Math. Hungar., 99 (2003) no. 3, pp. 203–208. DOI: https://doi.org/10.1023/A:1024571126455
M. A. Ozarslan and H. Altuglu, Local approximation properties for certain King type operators, Filomat, 27 (2013) no. 1 , pp. 173-181, https://doi.org/10.2298/fil1301173o DOI: https://doi.org/10.2298/FIL1301173O
Z. Ziegler, Linear approximation and generalized convexity, J. Approx. Theory,1 (1968) no. 4 , pp. 420-443, https://doi.org/10.1016/0021-9045(68)90031-2 DOI: https://doi.org/10.1016/0021-9045(68)90031-2
Published
Issue
Section
License
Copyright (c) 2017 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.