Extending the radius of convergence for a class of Euler-Halley type methods
DOI:
https://doi.org/10.33993/jnaat482-1115Keywords:
Euler-Halley method, Banach spaces, local convergenceAbstract
The aim of this paper is to extend the radius of convergence and improve the ratio of convergence for a certain class of Euler-Halley type methods with one parameter in a Banach space. These improvements over earlier works are obtained using the same functions as before but more precise information on the location of the iterates. Special cases and examples are also presented in this study.
Downloads
References
Amat, S., Busquier, S., Gutierrez, J.M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157 (2003), pp. 197– 205, https://doi.org/10.1016/s0377-0427(03)00420-5 DOI: https://doi.org/10.1016/S0377-0427(03)00420-5
Argyros, I.K., On an improved unified convergence analysis for a certain class of Euler-Halley -type methods, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 13, (2006), pp. 207–215.
I. K. Argyros D.Chen, Results on the Chebyshev method in Banach spaces, Proyecciones 12, (1993), pp. 119–128, https://doi.org/10.22199/s07160917.1993.0002.00002 DOI: https://doi.org/10.22199/S07160917.1993.0002.00002
I. K. Argyros D.Chen, Q. Quian, A convergence analysis for rational methods with a parameter in Banach space, Pure Math. Appl. 5, (1994), pp. 59–73.
Argyros, I.K., A.A. Magrenan, Improved local convergence analysis of the Gauss- Newton method under a majorant condition, Computational Optimization and Applications, 60,2(2015), pp. 423–439, https://doi.org/10.1007/s10589-014-9704-6 DOI: https://doi.org/10.1007/s10589-014-9704-6
D.Chen,I. K. Argyros, Q. Quian, A local convergence theorem for the Supper-Halley method in a Banach space, Appl. Math. Lett.7 (1994), pp. 49–52, https://doi.org/10.1016/0893-9659(94)90071-x DOI: https://doi.org/10.1016/0893-9659(94)90071-X
J. A. Ezquerro and M. A. Hernandez, New Kantorovich-type conditions for Halley’s method, Appl. Numer. Anal. Comput. Math., bf 2(2005), pp. 70–77, https://doi.org/10.1002/anac.200410024 DOI: https://doi.org/10.1002/anac.200410024
J. A. Ezquerro and M. A. Hernandez, On the R−order of the Halley method, J. Math. Anal. Appl., 303 (2005), pp. 591–601, https://doi.org/10.1016/j.jmaa.2004.08.057 DOI: https://doi.org/10.1016/j.jmaa.2004.08.057
J. A. Ezquerro and M. A. Hernandez, Halley’s method for operators with unbounded second derivative, Appl.Numer. Math., 57(2007), pp. 113–130. DOI: https://doi.org/10.1016/j.apnum.2006.05.001
J. M. Gutierrez, M. A. Hernandez, A family of Chebyshev-Halley-type methods in Banach space, Bull. Aust. Math.Soc. 55,(1997), pp. 113–130, https://doi.org/10.1017/s0004972700030586 DOI: https://doi.org/10.1017/S0004972700030586
J. M. Gutierrez, M. A. Hernandez, An acceleration of Newton’s method: Super- Halley method, Appl. Math. Comput., bf 117 (2001), pp. 223–239, https://doi.org/10.1016/s0096-3003(99)00175-7 DOI: https://doi.org/10.1016/S0096-3003(99)00175-7
M.A. Herandez, M.A. Salanova, A family of Chebyshev-Halley type methods, Int. J. Comput. MAth., 47 (1993), pp. 59–63, https://doi.org/10.1080/00207169308804162 DOI: https://doi.org/10.1080/00207169308804162
Z. Huang, On a family of Chebyshev-Halley type methods in Banach space under weaker Smale condition, Numer. Math. JCU 9 (2000), pp. 37–44.
Z. Huang, M. Guochun, https://doi.org/10.1007/s11075-009-9284-1 On the local convergence of a family of Euler-Halley type iteration with a parameter, Numer. Algor., 52 (2009), pp. 419–433, https://doi.org/10.1007/s11075-009-9284-1 DOI: https://doi.org/10.1007/s11075-009-9284-1
A. A.,Magrenan, Different anomalies in a Jarratt family of iterative root-finding methods, Appl.Math.Comput.233 (2014), pp. 29-38, https://doi.org/10.1016/j.amc.2014.01.037 DOI: https://doi.org/10.1016/j.amc.2014.01.037
A.A.Magrenan, A new tool to study real dynamics: The convergence plane, Appl.Math.Comput.248 (2014), pp. 215-224, https://doi.org/10.1016/j.amc.2014.09.061 DOI: https://doi.org/10.1016/j.amc.2014.09.061
X. Wang, Convergence of the iteration of Halley’s family and Smale operator class in Banach space, Sci. China Ser. A 41, (1998), pp. 700–709, https://doi.org/10.1007/bf02901952 DOI: https://doi.org/10.1007/BF02901952
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.