Extending the radius of convergence for a class of Euler-Halley type methods

Authors

  • Santhosh George National Institute of Technology Karnataka, India
  • Ioannis K Argyros Cameron University, USA

DOI:

https://doi.org/10.33993/jnaat482-1115

Keywords:

Euler-Halley method, Banach spaces, local convergence
Abstract views: 203

Abstract

The aim of this paper is to extend the  radius of convergence and improve the ratio of convergence for a certain class of Euler-Halley type methods with one parameter in a Banach space. These improvements over earlier works are obtained using the same functions as before but more precise information on the location of the iterates. Special cases and examples are also presented in this study.

Downloads

Download data is not yet available.

References

Amat, S., Busquier, S., Gutierrez, J.M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157 (2003), pp. 197– 205, https://doi.org/10.1016/s0377-0427(03)00420-5 DOI: https://doi.org/10.1016/S0377-0427(03)00420-5

Argyros, I.K., On an improved unified convergence analysis for a certain class of Euler-Halley -type methods, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 13, (2006), pp. 207–215.

I. K. Argyros D.Chen, Results on the Chebyshev method in Banach spaces, Proyecciones 12, (1993), pp. 119–128, https://doi.org/10.22199/s07160917.1993.0002.00002 DOI: https://doi.org/10.22199/S07160917.1993.0002.00002

I. K. Argyros D.Chen, Q. Quian, A convergence analysis for rational methods with a parameter in Banach space, Pure Math. Appl. 5, (1994), pp. 59–73.

Argyros, I.K., A.A. Magrenan, Improved local convergence analysis of the Gauss- Newton method under a majorant condition, Computational Optimization and Applications, 60,2(2015), pp. 423–439, https://doi.org/10.1007/s10589-014-9704-6 DOI: https://doi.org/10.1007/s10589-014-9704-6

D.Chen,I. K. Argyros, Q. Quian, A local convergence theorem for the Supper-Halley method in a Banach space, Appl. Math. Lett.7 (1994), pp. 49–52, https://doi.org/10.1016/0893-9659(94)90071-x DOI: https://doi.org/10.1016/0893-9659(94)90071-X

J. A. Ezquerro and M. A. Hernandez, New Kantorovich-type conditions for Halley’s method, Appl. Numer. Anal. Comput. Math., bf 2(2005), pp. 70–77, https://doi.org/10.1002/anac.200410024 DOI: https://doi.org/10.1002/anac.200410024

J. A. Ezquerro and M. A. Hernandez, On the R−order of the Halley method, J. Math. Anal. Appl., 303 (2005), pp. 591–601, https://doi.org/10.1016/j.jmaa.2004.08.057 DOI: https://doi.org/10.1016/j.jmaa.2004.08.057

J. A. Ezquerro and M. A. Hernandez, Halley’s method for operators with unbounded second derivative, Appl.Numer. Math., 57(2007), pp. 113–130. DOI: https://doi.org/10.1016/j.apnum.2006.05.001

J. M. Gutierrez, M. A. Hernandez, A family of Chebyshev-Halley-type methods in Banach space, Bull. Aust. Math.Soc. 55,(1997), pp. 113–130, https://doi.org/10.1017/s0004972700030586 DOI: https://doi.org/10.1017/S0004972700030586

J. M. Gutierrez, M. A. Hernandez, An acceleration of Newton’s method: Super- Halley method, Appl. Math. Comput., bf 117 (2001), pp. 223–239, https://doi.org/10.1016/s0096-3003(99)00175-7 DOI: https://doi.org/10.1016/S0096-3003(99)00175-7

M.A. Herandez, M.A. Salanova, A family of Chebyshev-Halley type methods, Int. J. Comput. MAth., 47 (1993), pp. 59–63, https://doi.org/10.1080/00207169308804162 DOI: https://doi.org/10.1080/00207169308804162

Z. Huang, On a family of Chebyshev-Halley type methods in Banach space under weaker Smale condition, Numer. Math. JCU 9 (2000), pp. 37–44.

Z. Huang, M. Guochun, https://doi.org/10.1007/s11075-009-9284-1 On the local convergence of a family of Euler-Halley type iteration with a parameter, Numer. Algor., 52 (2009), pp. 419–433, https://doi.org/10.1007/s11075-009-9284-1 DOI: https://doi.org/10.1007/s11075-009-9284-1

A. A.,Magrenan, Different anomalies in a Jarratt family of iterative root-finding methods, Appl.Math.Comput.233 (2014), pp. 29-38, https://doi.org/10.1016/j.amc.2014.01.037 DOI: https://doi.org/10.1016/j.amc.2014.01.037

A.A.Magrenan, A new tool to study real dynamics: The convergence plane, Appl.Math.Comput.248 (2014), pp. 215-224, https://doi.org/10.1016/j.amc.2014.09.061 DOI: https://doi.org/10.1016/j.amc.2014.09.061

X. Wang, Convergence of the iteration of Halley’s family and Smale operator class in Banach space, Sci. China Ser. A 41, (1998), pp. 700–709, https://doi.org/10.1007/bf02901952 DOI: https://doi.org/10.1007/BF02901952

Downloads

Published

2019-12-31

How to Cite

George, S., & Argyros, I. K. (2019). Extending the radius of convergence for a class of Euler-Halley type methods. J. Numer. Anal. Approx. Theory, 48(2), 137–143. https://doi.org/10.33993/jnaat482-1115

Issue

Section

Articles