Semi-local convergence of iterative methods and Banach space valued functions in abstract fractional calculus

Main Article Content

Ioannis K. Argyros
George A. Anastassiou

Abstract

We present a semi-local convergence analysis for a class of iterative methods under generalized conditions. Some applications are suggested including Banach space valued functions of fractional calculus, where all integrals are of Bochner-type.

Keywords
iterative method, Banach space, semi-local convergence, fractional calculus, Bochner-type integral

Article Details

How to Cite
Argyros, I., & Anastassiou, G. (2018). Semi-local convergence of iterative methods and Banach space valued functions in abstract fractional calculus. J. Numer. Anal. Approx. Theory, 47(1), 3-19. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1120
Section
Articles
Author Biography

Ioannis K. Argyros, Cameron University

Full tenured Professor of Mathematics.

References

[1] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, Springer, New York, 2006.
[2] S. Amat, S. Busquier, S. Plaza,Chaotic dynamics of a third-order Newton-typemethod, J. Math. Anal. Appl., 366(2010) 1, 24–32, Article on journal website: https://doi.org/10.1016/j.jmaa.2010.01.047.
[3] G.A. Anastassiou, Strong Right Fractional Calculus for Banach space valued functions, Revista Proyecciones, 36(2017) 1, 149–186, Article on journal website: https://doi.org/10.4067/s0716-09172017000100009.
[4] G.A. Anastassiou, A strong Fractional Calculus Theory for Banach space valued functions, Nonlinear Functional Analysis and Applications (Korea), accepted for publication, 2017.
[5] G.A. Anastassiou, Strong mixed and generalized fractional calculus for Banach space valued functions, Mat. Vesnik (2017) no. 3, pp. 176-191.
[6] I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl.,298(2004), 374–397, Article on journal website: https://doi.org/10.1016/j.jmaa.2004.04.008.
[7] I.K. Argyros, A. Magrenan, Iterative methods and their dynamics with applications, CRC Press, New York, 2017.
[8]Bochner integral. Encyclopedia of Mathematics. URL: http://www.encyclopedia of-math.org/index.php?title=Bochnerintegral& oldid=38659.
[9] M. Edelstein, On fixed and periodic points under contractive mappings, J. LondonMath. Soc., 37(1962), 74–79, Article on journal website: https://doi.org/10.1112/jlms/s1-37.1.74.
[10] J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez, N. Romero, M.J. Rubio, TheNewton method: From Newton to Kantorovich(Spanish), Gac. R. Soc. Mat. Esp.,13(2010), 53–76.
[11] L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces, PergamonPress, New York, 1982.
[12] G.E. Ladas, V. Lakshmikantham, Differential equations in abstract spaces, AcademicPress, New York, London, 1972.
[13] A. Alberto Magrenan, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., 248(2014), 215–224, Article on journal website: https://doi.org/10.1016/j.amc.2014.09.061.
[14] J. Mikusinski, The Bochner integral, Academic Press, New York, 1978.
[15] F.A. Potra, V. Ptak, Nondiscrete induction and iterative processes, Pitman Publ.,London, 1984.
[16] P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity,26(2010), 3–42, Article on journal website: https://doi.org/10.1016/j.jco.2009.05.001.
[17] G.E. Shilov, Elementary Functional Analysis, Dover Publications, Inc., New York, 1996