Semi-local convergence of iterative methods and Banach space valued functions in abstract fractional calculus
DOI:
https://doi.org/10.33993/jnaat471-1120Keywords:
iterative method, Banach space, semi-local convergence, fractional calculus, Bochner-type integralAbstract
We present a semi-local convergence analysis for a class of iterative methods under generalized conditions. Some applications are suggested including Banach space valued functions of fractional calculus, where all integrals are of Bochner-type.
Downloads
References
C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, Springer, New York, 2006.
S. Amat, S. Busquier, S. Plaza,Chaotic dynamics of a third-order Newton-typemethod, J. Math. Anal. Appl., 366 (2010) 1, 24–32, https://doi.org/10.1016/j.jmaa.2010.01.047. DOI: https://doi.org/10.1016/j.jmaa.2010.01.047
G.A. Anastassiou, Strong Right Fractional Calculus for Banach space valued functions, Revista Proyecciones, 36 (2017) 1, 149–186, https://doi.org/10.4067/s0716-09172017000100009.
G.A. Anastassiou, A strong Fractional Calculus Theory for Banach space valued functions, Nonlinear Functional Analysis and Applications (Korea), accepted for publication, 2017. DOI: https://doi.org/10.4067/S0716-09172017000100009
G.A. Anastassiou, Strong mixed and generalized fractional calculus for Banach space valued functions, Mat. Vesnik (2017) no. 3, pp. 176-191. DOI: https://doi.org/10.1007/978-3-319-66936-6_1
I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), 374–397, https://doi.org/10.1016/j.jmaa.2004.04.008. DOI: https://doi.org/10.1016/j.jmaa.2004.04.008
I.K. Argyros, A. Magrenan, Iterative methods and their dynamics with applications, CRC Press, New York, 2017. DOI: https://doi.org/10.1201/9781315153469
Bochner integral. Encyclopedia of Mathematics. URL: http://www.encyclopediaof-math.org/index.php?title=Bochnerintegral& oldid=38659.
M. Edelstein, On fixed and periodic points under contractive mappings, J. LondonMath. Soc., 37 (1962), 74–79, https://doi.org/10.1112/jlms/s1-37.1.74. DOI: https://doi.org/10.1112/jlms/s1-37.1.74
J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez, N. Romero, M.J. Rubio, The Newton method: From Newton to Kantorovich (Spanish), Gac. R. Soc. Mat. Esp., 13 (2010), 53–76.
L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2
G.E. Ladas, V. Lakshmikantham, Differential equations in abstract spaces, Academic Press, New York, London, 1972.
A. Alberto Magrenan, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., 248(2014), 215–224, https://doi.org/10.1016/j.amc.2014.09.061. DOI: https://doi.org/10.1016/j.amc.2014.09.061
J. Mikusinski, The Bochner integral, Academic Press, New York, 1978. DOI: https://doi.org/10.1007/978-3-0348-5567-9
F.A. Potra, V. Ptak, Nondiscrete induction and iterative processes, Pitman Publ., London, 1984.
P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity, 26 (2010), 3–42, https://doi.org/10.1016/j.jco.2009.05.001. DOI: https://doi.org/10.1016/j.jco.2009.05.001
G.E. Shilov, Elementary Functional Analysis, Dover Publications, Inc., New York, 1996
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.