On convergence of Chlodovsky type Durrmeyer polynomials in variation seminorm
DOI:
https://doi.org/10.33993/jnaat471-1126Keywords:
convergence in variation seminorm, Chlodovsky polynomials, Durrmeyer polynomials, rate of convergence, absolutely continuous functionsAbstract
This paper deals with the variation detracting property and rate of approximation of the Chlodovsky type Durrmeyer polynomials in the space of functions of bounded variation with respect to the variation seminorm.
Downloads
References
I. Chlodovsky, Sur le développement des fonctions définies dans un interval le infinien séries de polynomes de M. S. Bernstein, Compositio Math., 4 (1937), 380–393.
T. Hermann, Approximation of unbounded functions on unbounded interval, Acta.Math. Hungar., 29 (1977), 393–398, https://doi.org/10.1007/bf01895859. DOI: https://doi.org/10.1007/BF01895859
G. Bleimann, P.L. Butzer and L. Hahn, A Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255–262, https://doi.org/10.1016/1385-7258(80)90027-x. DOI: https://doi.org/10.1016/1385-7258(80)90027-X
J.L. Durrmeyer, Une formule d’inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3e Cycle, Faculté des Sciences de l’Université de Paris, 1967.
H. Karsli, P. Pych-Taberska, On the rates of convergence of Chlodovsky–Durrmeyer operators and their Bézier variant, Georgian Math. J.,16 (2009) no. 4, 693–704. DOI: https://doi.org/10.1515/GMJ.2009.693
H. Karsli, Order of convergence of Chlodowsky type Durrmeyer operators for functions with derivatives of bounded variation, Indian J. Pure Appl. Math., 38 (2007) no. 5, 353.
G.G. Lorentz, Bernstein polynomials, University of Toronto Press, Toronto (1953).
C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, Convergence in variation andrates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis (Munich), 23 (2003) no. 4, 299–346, https://doi.org/10.1524/anly.2003.23.4.299. DOI: https://doi.org/10.1524/anly.2003.23.4.299
O. Agratini, On the variation detracting property of a class of operators, Appl. Math. Lett., 19 (2006), 1261–1264, https://https://doi.org/10.1016/j.aml.2005.12.007. DOI: https://doi.org/10.1016/j.aml.2005.12.007
A. Kivinukk, T. Metsmagi, Approximation in variation by the Meyer-König and Zeller operators, Proc. Estonian Acad. Sci., 60 (2011) no. 2, 88–97, https://doi.org/10.3176/proc.2011.2.03. DOI: https://doi.org/10.3176/proc.2011.2.03
H. Karsli, On convergence of Chlodovsky and Chlodovsky-Kantorovich polynomials inthe variation seminorm, Mediterr. J. Math., 10 (2013), 41–56, https://doi.org/10.1007/s00009-012-0186-4. DOI: https://doi.org/10.1007/s00009-012-0186-4
Ö. Öksüzer, H. Karsli, F. Tasdelen, On convergence of Bernstein-Stancu polynomials in the variation seminorm, Numer. Funct. Anal. Optim., 37 (2016) no. 4, 1–20, https://doi.org/10.1080/01630563.2015.1137938 DOI: https://doi.org/10.1080/01630563.2015.1137938
H.Gül ?nce ?arslan, G. Ba?canbaz-Tunca, Convergence in variation for Bernstein-type operators, Mediterr. J. Math., 13 (2015) no. 5, pp. 2577–2592, https://doi.org/10.1007/s00009-015-0640-1. DOI: https://doi.org/10.1007/s00009-015-0640-1
U. Abel and O. Agratini, On the variation detracting property of operators of Balázs and Szabados, Acta Math. Hungarica, 150 (2016) no. 2, 383–395, https://doi.org/10.1007/s10474-016-0642-x. DOI: https://doi.org/10.1007/s10474-016-0642-x
H. Karsli, Ö. Öksüzer Y?l?k, F. Tasdelen, Convergence of the Bernstein–Durrmeyer operators in variation seminorm, Results Math., 72 (yr??), 1257–1270, https://doi.org/10.1007/s00025-017-0653-0. DOI: https://doi.org/10.1007/s00025-017-0653-0
P.L. Butzer and H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Száasz-Mirakyan operator, Comment. Math., 49 (2009) no. 1, 33–57.
R.M. Trigub and E.S. Belinsky, Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht (2004) DOI: https://doi.org/10.1007/978-1-4020-2876-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.